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THE END OF TECHNICAL COEFFICIENTS? 
An attempt of visual approach to multisectoral dynamics  
Maurizio Ciaschini -  Università degli Studi di Macerata  
 
1. Introduction 

 The concept of technical coefficient is one of the fundamentals of the Leontief paradigm 

which is based essentially on the  assumptions that each sector produces one and only one good and 

the technology used implies fixed coefficients. 

 These assumptions have created a powerful and reassuring tool for the applied researcher 

both in the field of data observation (national accounts) and data analysis (Leontief model). 

 However the presence technologies where input requirements depend on the scale of the 

sectoral activity is a phenomenon which characterises the process of production. This fact and the 

increasing prevalence, within the set of goods composing output, of immaterial productions, makes 

the fixed technical coefficient appear, according the critic analysts, a dated instrument progressively 

unsuitable to cope with the most relevant and fluid phenomena of the value production of our days.

 The difficulty of treatment of the problem, posed in terms of scale dependent input 

coefficients, in fact, refrains many researchers to try to direct their attention to this possible 

development. With the result that analysis is kept within the constant coefficient approach which, 

though limited, is much more submissive. A consolation for applied workers with  few data and a 

lot of ambitions.    

 

2. Dynamics of weak interactions 

 With the Leontief technical coefficient, technology has had been introduced in 

macroeconomic modelling, through the introduction of the input requirements. The definition of 

input requirements, at least in theory, is done through a technological assumption which seem to 

allow, in principle, their definition in material terms. In practice, however, the reference to an 

accounting system deriving form SNA, realizes  the definition of technical coefficient in terms of an 

"expenditure" coefficient that practically defines a demand component: the intermediate demand. 

 The explicitation of this demand component should be relevant also in aggregated 

macroeconomic models, since intermediate demand usually amounts to a figure of the same 

relevance of  consumption expenditures, and its behaviour does not depend on the same  explicative 

variables.  This two considerations  should not allow, even in the aggregated income models, the 

omission of this demand component.   

 In a multisectoral model it is impossible to omit this component since the accounting 

identity for which output equals value added no more holds and sectoral output is in principle



different from sectoral value added, even in the case that one should adopt a definition of output in 

terms of "final" products. 

 Multisectoral interaction, based on the traditional concept of technical coefficient, operates 

starting from the level of sectoral output  through the determination of sectoral input requirements, 

according fixed technical coefficients. This type of interaction can be defined "weak interaction" 

since the level of activity doesn't influence the technical coefficient itself. 

 Weak technical coefficient, i.e. the technical coefficient in the case of weak interaction, is 

not only an assumption on a demand component of whatever importance, rather it becomes a 

milestone in the conventional wisdom on multisectoral framework, in particular on multisectoral 

dynamics. 

 In this field the restrictions posed by the weak technical coefficient appear more and more 

severe1. The implications of Perron Frobenius theorem on the (weak) Leontief model reflect on two 

aspects. On the one side all the sectors' outputs grow at the same constant rate, maintaining the 

same structure. This feature transforms the multisectoral problem into an aggregated one, since, 

given the feature of global instability, we can concentrate only on those behaviours that do not 

imply a change in the inner structure of macroeconomic variables, making useless the multisectoral 

approach.  

 With weak technical coefficients the only type of dynamic behavior is that represented in 

Fig. 1. If initial conditions are given according the structure established by the Frobenius 

eigenvector  uF than sectoral aggregates will stay positive and grow at the rate λF
-1. Outside this 

path all trajectories will be attracted by the dominating eigenvalue, λD, towards the structures 

established by its associated eigenvector,uD, where aggregates become negative after some 

interactions.  

                                                           
 
1 Given an nxn technical coefficients matrix A  and an nxn capital coefficients matrix B,  dynamic Leontief model can be written as:  

x I B I A x B ft t t+
− −= + − −1

1 1[ ( )]  

Matrix ( )I A B− − 1 , by the Perron-Frobenius theorem admits a dominating eigenvalue  λF with associated eigenvector uF with all positive 

elements. The dynamic Leontief model can mantain positive solutions only if initial conditions are given according the proportions determined by uF. 

The constant growth factor is given by 1+1/λF and the growth rate path will be unstable since eigenvalue 1+1/λF is the smallest eigenvalue of 

matrix [ ( )]I B I A+ −− 1 .  
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On the other hand if initial endowments are not consistent with those associated with the balanced 

growth path, then these endowments will not adjust towards the required endowments leading to 

negative values in the solutions. 

Fig. 1: State space diagram for a two sector model with weak interaction 

 

 Weak technical coefficient2 a represents the unit-output input requirement and capital 

coefficient b represents the unit-output fixed capital requirement. The dynamic model is written as:   

(1)  xt+1= {1+[1/b](1-a)} xt - [1/b] ft. 

Assuming final demand equal to zero the model will admit the origin as stationary state point. 

Scalar r=[1/b](1-a) represents the balanced growth rate since, starting from non zero initial 

conditions, x0, the system will grow by a factor (1+r) in each period. Standard assumptions on 

coefficients state that the capital coefficient is positive, b>0, and technical coefficient is located 

between zero and one. The system will be then progressively repelled from the origin. This 

behaviour can be appreciated through the use of the Cobweb diagram. Fig.2 shows the graphical 

construction of the systems' trajectory (x0,x1,x2,...) starting from initial conditions that are given 

around the fixed point xf = 0. It is given by the intersection of the function graph f(x), in this case a 

line with slope r, with the bisettrix  xt+1=xt. 

 

 

                                                           
2 To avoid  notational complications we will refer to the one sector model as long as possible.  
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Fig. 1: State space diagram for a two sector model with weak interaction 

 

 This is the reason why the most relevant results in the field of "weak" analysis have been 

obtained within the model without investment - fixed capital reproduction - where starting from the 

technical coefficient matrix, the static multiplier analysis, linkage analysis  and key sectors analysis 

have been developed. 

 

3. Technical coefficient disintegration  

 If we want to model a more advanced specification of the unit-output input requirement than 

we should  make the weak technical coefficient react to the level of activity  according some 

reasonable assumptions. We will, then, get a multisectoral framework where technical coefficients, 

no  more fixed, are suitable for quantifying the implications of the differentials in sectoral returns to 

scale and the swings in the value content of immaterial inputs. In the simplest case of  dependency, 

the linear dependency, we could can write: 

                                                           m/x =   a + a'x 

 With respect to the traditional case of weak interaction, in this case a further interaction is 

superimposed which operates on input requirements starting from the scale of sectoral output. This 

type of interaction that will be called strong interaction implies the activation of two causal links: 

the first between sectoral output and, given a unit (-output) input requirement, corresponding inputs 

required, the other originating from sectoral ouput for the determination of  unit(-output) input 

requirement. 

 If we confine to the case of positive linear strong interaction,  output can be realised as long 

as required inputs do not exceed output itself. However it can be expected that approaching a 

predetermined output level, xb, that we define as sustainable output or steady state output it will be 

more and more difficult to obtain output given the increasing rate of input requirements. The output 
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levels which can be mantained are those for which the input demands, m, is not greater than output 

x 

m/x = a+a'x ≤ 1 

which means   

x ≤ (1-a)/a'. 

If we put  

xb = (1-a)/a' 

we can write  

x ≤ xb. 

The new Leontief model with strong interaction i.e. the scale dependent input requirements (SDIR) 

model will be given by: 

 (2)                              xt+1 = [1+(1-a)/b]xt - (a'/b)xt²-1/b ft. 

Cobweb diagram in fig.3 shows the existence of a second non zero fixed corresponding to the 

intersection of parabola y =[1+(1-a)/b]z-(a'/b)z² with the line y=x; where  y=xt+1 and  z=xt. 

 

Fig.3: Cobweb for the one sector dynamic model with strong interaction 

 

 

 From  Fig.3a we note that the trajectory converges towards xd2, which represents the level 

of sustainable output, xb. We can linearize around the fixed point. Fig.3b shows a magnification of  
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Fig.3a around the fixed point. The Cobweb diagram obatined thruogh the use of parabola is 

practically the same as that obtained using the tangent line. In both cases trajectories move towards 

the fixed point xd, which for this reason is defined as attractive, as long as the slope of the line 

f(xt)=(a'/b)xt+[1+(1-a)/b] is less than unit. 

 Moreover we are able to determine the basin of attraction of the fixed point xd. This region, 

D(xd ), designates the initial conditions for which trajectories are attracted by the fixed point. In our 

case, see fig.3(a), this region is given by the interval limited by the repelling fixed point xd1=0 and 

the intersection of the parabola with the horizontal ax. In fact we note that an initial condition given 

outside this interval will generate a divergent trajectory towards - ∞. 

 We then attain the general conclusion that the SDIR model has a the fixed point which is 

attractive if f'(xd )<1, and repelling if se f'(xd )>1; it possesses an asymptotical output structure 

xd towards which it tends or from which is repelled. 

 In less formal terms we have come to the conclusion that if we renounce to the concept of  

(fixed) technical coefficients we do not change a simple detail in a model specification. We 

demolish a consolidated conventional wisdom on multisectoral dynamics according which the 

stability of a dynamical system is established once and for all according its structural coefficients.  

 Stability and instability can coexist in the same framework, so that a new problem arises that 

of determining the borders across which our trajectories will be no more pulled towards a 

reasonable objective but pushed to explosion. 

 Within the model the unit-output input coefficient breaks  into several components 

disintegrating the identificabily of the technical coefficient.  

 

4. Dynamics of strong interactions 

 Even if our analysis will finally lead us to resort to numerical simulation and avoid algebra, 

we need now to carry on a bit more with formal analysis, to identify the dynamic patterns can be 

further found in a framework of strong interaction, other than the balanced growth path. We take 

into consideration the case where f'(xd )=1. [In this case it may happen that the system is attracted 

by some equilibrium configuration other than a fixed point or infinity.]  

 Resorting to parameter r, that will be defined as potential growth rate, and sustainable 

output, xb,  eq.(2) can be rewritten as  

(3)                                           xt+1-xt = r [1 - (xt /xb)]xt.                     
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In the case of weak interaction the system's growth rate would be determined by r, which represents 

the share of resources not used as materials per unit output,(1-a) and capital coefficient b. When 

output is greater than xb inputs will become greater than the corresponding output. So when  xt>xb 

capital stock (or inventories) will begin to decrease to allow for production and this will imply a 

negative growth rate (xt+1-xt )<0. When output is less than xb, the accumulation process can take 

place since htere are resources left, once that inputs have been used in the producing process. When 

xt<xb then (xt+1-xt)>0. If the output level is low compared to xb, which means that resources are 

abundant after having employed the materials then the actual growth rate should be near the 

potential growth rate r. However when output grows the actual output growth rate decreases and 

becomes equal to one when xt=xb. 

The equilibrium output for model (3) can be determined  putting xt+1 = xt = xd: 

xd = (1+r)xd - (r/xb)x²f 

getting the values   

xd1=0    e    xd2=xb. 

We can choose the dimension of our units, defining a unit as xb so that xd2=1. Through this 

procedure we standardise the model so that output and final demand that up to now has been 

assumed equal to zero, can be expressed as a proportion of sustainable output. 

The Leontief  Scale dependent input coefficients (SDIR) model becomes: 

(4)                                                         xt+1=(1+r) xt - rxt².       

We can easily show that xd=0 e xd=1 are fixed points, and that  

f(x)  = (1+r)x - rx²               f'(x) = 1+r-2rx. 

The  fixed  point in   the origin,   the Leontief  fixed point, xd1=0,  will always be repelling since for 

0≤a<1 and b>0,   f'(0)=1+r >0. The other fixed point xd2=1 will be attractive if f'(1)=1-r<1 

that is 0<r<2. Se b=(1-a)/2, the balanced growth rate r becomes equal to 2, and the method based 

on the derivative becomes inconclusive since, as we said,  f'(1)=-1. For establishing the stability of 

xd we need to define an iterated map. The resulting dynamic model  xt+2=g(xt )=f(f(xt )) also 

admits xd  a fixed point. After some calculus we get 

g'(xd )=1 

g"(xd)=0 

g"'(xd )=-2f"'(xd )-3(f"(xd ))2. 
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If  g'(xd )=1, g"(xd )=0 e g"'(xd )<0 the Cobweb diagram is such that the curve switches form 

upper concave to lower concave in the fixed point so that xd results attractive. If r>2 the fixed point 

xd=1 is repelling, since f'(1) = 1+r2r>1. If initial endowment x0 is chosen in the proximity of 

the fixed point xd=1, then xt gets away to reach a 2-cycle, as shown in Fig. 4(a). The fixed point 

xd=0 is repelling since  f'(0)=1+r>1. If we construct a diagram as in Fig. 4(b) starting from low 

initial conditions, for example  x(0)=0.1, trajectory xt will be repelled from the origin  xd=0 and 

attracted by the same 2-cycle. 

 
 Fig. 4: Repelling fixed points 
 

To show algebraically that a 2-cycle is attractive we need to refer to the iterated map: 

xt+2=f(f(xt))=f (2)(xt). 

If for the iterated map, f (2)(xt), both xc1 and  xc2 are attractive fixed points, then these points will 

constitute an attracting 2-cycle for  f(x(t)). We will now determine for which values of r our system 

exhibits a 2- cycle. Fixed points  that satisfy xd=f(f(xd )) ove  f(xd )=(1+r) xd-rxd² are: 

x r r
rc =

± −2 4
2

2  

Since f'(x)=(1+r)-2rx then 

f x f x r r r r
r

r r r r r rc c
' '( ) ( ) [ ][ ]1 2

2 2
2 21 2 2 4

2
1 2 2 4 1 4 5= + −

+ + −
+ −

+ − −
= − + = −  

 

If 

 -1<5-r²<1 

that is  
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2<r<√6=2.449 

the 2-cycle is attractive. When r increases the stable cycle doubles its period and this process is 

known as "period doubling". When r increases further and becomes greater than a threeshold level 

then the "chaotic regime" is activated which is characterised by sensitivity to initial conditions and 

aperiodic trajectories within limited intervals. Sensitivity to initial conditions means that to 

trajectories having very similar initial conditions x0 e (x0+ε) for ε positive, after some iterations, 

will exhibit dynamic behaviours rather dissimilar. 

We can follow the first phases of the process with reference to Fig.5(a)-(d). IN Fig. 5(a) we have 

represented the iterated map f (2)(xt) together with the original function  f(xt). Technology is 

defined by  technical coefficient a=0.2, and by capital coefficient b=0.57. The potential growth rate 

will be equal to 1.4 and fixed point xd, is unique and attractive. As shown in this figure f(xd ) and f 

(2)(xd )  coincide and  f’(xd ) and f’(2)(xd ) are less than unit. 

Fig. 5:  (a) Attractive fixed point. (b) 2-cycle emergence. (c) (d) 4-cycle emergence. 

 

 In Fig.5(b) the formation of an attractive 2-cycle is shown. Capital coefficient b has fallen 

from  0.57 to 0.33 so that the potential growth rate r has increased to  2.42. 
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Fixed point xd has now become repelling, as it emerges from the slope of the original function 

evaluated in the fixed point f'(xd)>1. A 2-cycle has generated given by the two points on the 

iterated map, xc1 e xc2. This cycle is attractive, since the slope of the iterated map,  f(xt), evaluated 

in the two points, is less than unit, f'(2)(xc1)<1 and f'(2)(xc2) <1. 

Fig.5(c) shows the emergence of an attractive 4-cycle. The capital coefficient has    decreased to 

0.32 and r has increased to 2.5. The two points xc1 and xc2 become repelling since the derivative of 

the iterated map, f(2)(xt), evaluated in the two points  xc1 and  xc2, becomes greater than unit. 

While on the iterated map  f(4)(xt) four fixed points appear xc11, xc12,  xc21, xc22 for which 

f'(4)(xcij)<1 with  i,j =1,2. Further decreases in coefficient b lead to the chaotic regime. Fig.6(a) 

shows an example of aperiodic trajectory for  xt , 0<t<100. 

 We can show in a diagram on the plane (b,a) all the possible equilibrium configurations and 

the critical values that determine the transition from one to another. Fig. 6(a) shows for each couple 

technical coefficient and capital coefficient the type of equilibrium configuration.  

 

Fig. 6:  (a) Chaotic trajectory. (b) Critical values for  coefficients a and b. 

 

In this framework the introduction of time-invariant final demand, ft=f*, will transform model (4) 

as follows: 

(5)                                             xt+1=(1+r)xt-rx²t-(1/b)f*         

where variables are measured with respect to xb. 

 Final demand operates in the sense of modifying the intercept of the parabola. The parabola 

in fact slides down until the two points coincide.  A further increase in final demand generates the 

disappearance of the two fixed points. 
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 Fig. 7: Effects of final demand on the output trajectory 

 

5. Focus, saddle and node as alternatives to the balanced growth path 

 We will now try to generalise the one sector model to the n sector case. The unit 

intermediate requirements of goods of the ith type per unit of output of the jth sector can be written 

as  

                                                              mij/xj =  aij +  a'ijxj 

 Intermediate requirements in matrix notation will be given by: 

m A x C x xt t t t= + ~  

where matrix C=[a'ij] and matrix ~x t  is a diagonal matrix whose diagonal elements are given by the 

elements of vector  xt. The n sector model will be given by:                                  

(6)                                            x I B I A x B Cx x B ft t t t t+
− − −= + − − −1
1 1 1[ ( )] ~  

As in the one-sector case, we may refer to a linearization of system (6) around the fixed point. After 

having calculated the fixed point, we obtain the matrix of first derivatives, the Jacobian matrix  

J x
f x x f x x
f x x f x xd

d d d d

d d d d

( )
( , ) ( )
( , ) ( , )

=










11
1 2

12
1 2

21
1 2

22
1 2

 

 

 = + − −− −[ ( )] ~I B I A B Cxdt
1 12  
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In a convenient vicinity of fixed point xd containing the fixed point, i.e. within its basin of 

attraction,  the trajectories of dynamical system  (6) are those exhibited by linear model:                    
(7)                                               

tdt xxCBAIBIx ]~2))([( 11
1

−−
+ −−+=  

where vector xt is now measure with respect to xd. This means that the growth paths will be 

measured with reference to an axes system conveniently oriented and centred on the fixed point. 

 For a discussion of the possible shapes of the growth paths of a strong interaction dynamic 

system it is convenient to assume that the model has been transformed into its canonical form. 

The state space diagram of the actual model can differ since non singular transformation U distorts 

the diagram. However transformation U doesn't change the character and the properties of these 

diagrams. The possible growth paths depend on the characteristics of the fixed point. The fixed 

point can in fact be a node, a focus,  a saddle or a centre. 

 If the fixed point is a node the growth path doesn't exhibit fluctuations. Matrix J has two real 

and distinct eigenvalues, λ1 e λ2, and is written as:  

                                                      J =










λ
λ

1

2

0
0  

The two eigenvalues can be less than unit in modulus, λ1<λ2<1, then the fixed point is a 

stable tangent node. For x1,t=0=x2,t=0=0 we get the fixed point. For x1,t=0=0 e x2,t=0 ≠ 0 we get 

the x2 ax (fixed point excluded) and we note that while  t gets to infinity x2 tends to 0. Similarly  

for  x2,t=0=0 e x1,t=0 ≠ 0 we get the x1 ax (with exclusion of the fixed point) and for t that tends 

to infinity x1 tends to 0. In general the motion along a whatever path consists in the asymptotical 

approach of the origin as can be seen in Fig. 8(a). In the case where λ2<λ1<1 then the growth 

paths will become tangent to the x2 ax. If on the contrary the two eigenvalues are greater than one 

in modulus the fixed point is an unstable tangent node similar to the case in Fig. 8(a) but with the 

growth paths in reversed orientation. 

 If matrix J has a repeated eigenvalue λ but is not diagonal, which happens when the number 

of repetitions of the real eigenvalue is less than the dimensions of the state space then it will be 

written as:  

                                                             







=

λ
λ
0

1
J  

 In this case if the eigenvalue is less than one, λ<1, than the fixed point is said stable 

improper node since x1 and  x2 move towards zero when t tends to infinity, as shown in Fig. 8(d). If 
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λ>1 then the fixed point is said unstable improper node. The growth rates of the model in the space 

state are similar to those shown in Fig.8(d) but with reversed arrows. 

 Fig. 8: Growth paths for output 
 

 When the fixed point is a focus than the growth paths move with oscillations towards (or 

from) the fixed point. Matrix J has complex eigenvalues and is written as:   

                                       J =










α µ
µ µ

 

where α represents the real part and µ the imaginary part.  
 If the real part α is les than one, the fixed point is said stable focus and the paths in the state 

space appear as shown in Fig. 8(c). If the real part is greater than unit the fixed point is said an 

unstable focus and the paths are similar to those shown in Fig. 8(c) with the reversed arrows. 

A special case is detected when matrix J has a repeated eigenvalue. It can be written as: 

                             J =










λ
λ
0

0
 

and we will have that  x2/x1 = (x2,t=0/x1,t=0) or x2 = (x2,t=0/x1,t=0)x1. This means that the 

growth paths will be lines to the fixed point generated according the ratio between initial 

endowments (x2,t=0/x1,t=0). 
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 If the eigenvalue is lower than unit the points will move towards the fixed point as in 

Fig.8(f). If its greater than one they will be divergent and the fixed point will be an unstable focus.

 When the fixed point is a saddle the paths will move firstly towards the fixed point ut in its 

vicinity will begin to diverge. This will happen when the eigenvalues will be the one greater than 

unit and the other less than unit, λ1<1<λ2. For  x1,t=0=0 e x2,t=0=0 we get the x2 ax (with 

exclusion of the fixed point) while x2 will tend to infinity as time passes on. The motion along the 

positive semiax x1 points towards the fixed point and the motion along the positive semiax x2 

diverges from the fixed point  as can be seen in fig. Fig.8(b). In the case where λ2<1<λ1 then the 

orientation of the paths in the same figures would be reversed. 

 If the fixed point is a centre the growth paths will nor approach nor get away from the fixed 

point. In this case matrix J has complex and conjugated eigenvalues with real part equal to zero 

generating paths similar to circles centred on the fixed point. If the imaginary part is greater than 

zero, µ>0, the direction of the motion is clockwise while if it is less than zero, µ<0 the motion 

direction is anticlockwise  as shown in Fig. 8(a). 

 

6.  Visual multisectoral analysis 

 However the variety multisectoral dynamic paths shown in Fig. 8 doesn't exhaust the dynamic 

possibilities of a strong interaction multisectoral model. It refers only to those cases where a fixed 

point exists and we have been able to detect it, so that the its linearization has been made possible. 

The emergence of cycles and turbulence cannot be studied in this way. We need to actually 

compute the trajectories of the system to see how it behaves when the fixed point from attracting 

becomes repelling. A useful tool is to compute the basin of attraction of the attracting fixed point, 

region D(xd ) in chapter 3, and to see how it varies under different values of the parameters. 

For each initial endowment (condition) we will determine the number of iterations needed to reach 

the fixed point or infinity. We will then represent on the x,y plane those initial conditions that 

approach the fixed point (or infinity) within the same number of iterations with dots of same colour. 

Lets calculate a basin of attraction for a strong interaction model where the parameters are given by: 

A = [a11=0.00612  a12= 0.00010  a21= 0.01605  a22=0.00566] 

C = [c11=0.20890  c12= 0.03900  c21= 0.04030  c22=0.04000] 

B = [b11=0.10000  b12= 2.00000  b21= 0.20000  b22=0.04000] 

f = [ f1=0.500000  f2= 0.80000] 

and we let the capital coefficient b21 vary. 
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a) Existence of an attracting focus 

The morphology of the basin of attraction in 

the case of  existence of an attracting fixed 

point is shown in Fig.9(a); this happens when 

parameter b21 is put equal to 3. The basin of 

attraction of fixed point in F, which, as we will 

see, is an attracting focus, is given by the 

almost triangular region in the centre of the 

figure. Outside this region the system cannot 

survive, trajectories are explosive, but with 

different speeds which are denoted, in the 

same figure,  by different colours. 

In the lower border of this region one can 

detect a repelling 2cycle C. All the points of 

the border represent the extension to two 

sectors of the Leontief repelling fixed point 

discussed in chapter 4 for the one sector case.  

In fact a trajectory starting precisely on the 

border with neither converge or diverge but 

remain confined to the border. 

The black belts around the attracting fixed 

point F indicate subregions, within the basin, 

where the trajectory converges at the same 

velocity. Fig.9(b) shows more clearly further 

details. The subregion in white within the 

basin designates trajectories that converge 

within less of 20 iterations and some 

trajectories have been actually drawn on it. 

Trajectories initiating in the vicinity of point C 

are repelled. If they start within the border, 

first adjust proportions towards those of a 

common guideline and then reach the focus by 

means of a common path g. Those initiating 

outside the border are repelled to infinity.  

 

 
Fig.9(a) 

 
Fig.9(b) 

 
 

Fig.9(c) 
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The wider picture in Fig 9(c) shows, however, 

that all trajectories initiating near and outside 

the border of the basin of attraction assume the  

typical Leontief divergent pattern attracted by 

a north - east path w to explosion. 

 

b) Disappearance of the attracting focus 

b) If  parameter b21 is equal to 0,78 the fixed 

point vanishes i.e. the multisectoral economy 

is no more able to warrant a fixed sustainable 

output vector. However the trajectory within 

the basin, g, doesn't explode. It is now 

attracted towards an oscillating sustainable 

output path, which  remains confined within 

the basin as in fig 10(a). Starting outside the 

trajectory diverges along the path w. 

For further decrease of the parameter the basin 

of attraction breaks generating small regions of 

instability inside the non explosive area.  

In Fig. 10(b) we see a trajectory starting from 

one of these "holes" within the basin that 

diverges. Fig 10(c), on the contrary, shows the 

same basin with a trajectory that remains 

confined within the basin. 

 

 
Fig.10(a) 

 

 
Fig.10(b) 

 
Fig.10(c) 
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c) Dissolution of the basin of attraction 

 

Finally for further decrease of the parameter 

b21 the system reaches the chaotic regime. In 

this case also the basin of attraction becomes 

chaotic as can be appreciated from Fig. 10(a). 

Here starting from the chaotic area of the 

basin we will get chaotic trajectories. The 

"holes" of instability still persist within the 

chaotic basin. 

For a further decrease in b21 the  basin of 

attraction completely vanishes. All initial 

conditions generate explosive trajectories, 

which however have not the same velocity of 

explosion since more dense areas generate 

trajectories that remain in the vicinity of the 

origin for more iteration than those starting 

from less dense (darker) areas, see Fig. 10(b) 

(c). 

One could also see this sequence in the 

reverse way i.e. for increasing values of the 

parameter. Starting from Fig. 11(c) back 

wards we get a sort of "genesis of stability" 

starting from instability through chaos to 

stability. From this figure in fact we get 

information on the location of initial 

conditions which generate less unstable 

trajectories. This information is valuable both 

in designing and in evaluating changes in the 

parameters in view of reinforcing the 

"stability" of the system. 

  

 

 
Fig.11(a) 

 
Fig.11(b) 

 

 
Fig.11(c) 
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7. Conclusions 

 

 Conventional wisdom in multisectoral analysis is that dynamics generating inside 

multisectoral models with fixed technical coefficients and capital reproduction is characterized by a 

high degree of instability. The introduction of strong interaction seems to put into crisis the concept 

of technical coefficient, that of the balanced growth path and also the method of  obtaining insights  

on the dynamic behaviours exclusively through the mathematical analysis of the parametric 

structure of the model. 

If  technical coefficient is not fixed it could be worthwhile to model the industrial absortions 

directly as demands by each sector. These industrial demands will contribute with their parameters 

to the reduced (recursive) form of the model without a specific functional meaning of each 

parameter. Alternatively we could still model the technical coefficient, seen as the intermediate 

demand per unit output, which reacts to the level of  output  of the same sector  or of other relevant 

sectors, in a way that keeps the functional meaning of each parameter.    

Under the point of view of  mathematical analysis, through the idea of linearization around the 

fixed point, it is possible to discover some typical dynamic behaviours which update the traditional 

idea of balanced growth path. The existence of  a sustainable output vector, which can be seen as a 

node, a focus, a saddle or a centre, adds dynamical patterns within the analysis of multisectoral 

dynamics. This investigation, however, is possible only when the fixed point is known. So that we 

need, preliminarily, a method  for determining the fixed point which usually is not based on 

mathematical analysis but on numerical methods.  

Moreover we need to resort to numerical analysis as exclusive tool in the case where the fixed 

point dos not exist. We can in fact find further dynamic patterns in connection with the fact that the 

attracting fixed point can transform into an n-cycle and from there into a chaotic attractor. Through 

the period doubling onset  to chaos,  the problematics of facing "turbulence" is introduced in 

multisectoral dynamics.  

In the context of strong interaction, then, numerical simulation plays both the role of  an applied 

and a qualitative tool. It can reveal situations that cannot be detected on the basis of the analysis of 

the parameters of the model and which became apparent when analysing and comparing the shapes 

of the basins of attractions and their changes.  

This analytical procedure seems to anticipate a sort of  "visual" approach in the discussion of the 

numerical results for multisectoral analysis; an idea that could not appear  so eccentric once that 

data evidence becomes reliable and multisectoral analysis not confined to the unnecessary long run.  
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