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In this paper we study the dynamics of a discrete triangular system T in capital per capita
and population growth representing the neoclassical growth model with CES production
function and differential savings, under the assumption that the labor force growth rate is
endogenous and described by a generic iterative scheme having a unique positive globally
stable equilibrium n̄. The study herewith presented aims at confirming the existence of a
compact global attractor for system T along the invariant line n̄. Consequently asymp-
totic dynamics of growth models with constant population growth rate can be related
to those with non-constant population growth if the steady state rate is globally stable.
Furthermore we prove that the system exhibits cycles or even chaotic dynamics patterns
if shareholders save more than workers, when the elasticity of substitution between pro-
duction factors drops below one (so that capital income declines). The analytical results
are supplemented by numerical simulations.
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1 Introduction

Dynamic economic growth models have often considered the standard, one-
sector neoclassical model by Ramsey (1928) or the Solow-Swan model (see
Solow, 1956, and Swan, 1956). Both these dynamic models show that the
system monotonically converges to the steady state (i.e. the capital per capita
equilibrium) so neither cycles nor complex dynamics can be observed (see also
Dechert, 1984). However, while Ramsey’s assumption on savings behavior
corresponds to maximizing the discounted sum of utility of a representative
consumer who lives infinitely, in the Solow-Swan model, constant average
propensity to save is assumed.

While considering one-sector growth models, other authors (i.e. Kaldor,
1956 and 1957, Pasinetti, 1962 and Samuelson & Modigliani, 1966) studied
the following issue: whether the different saving propensity of two groups
(labor and capital) as first proposed by Chiang (1973), might influence the
final dynamic of the system. The question of differential savings between
groups of agents was originally posed within the Harrod-Domar model of
fixed portion (Harrod 1939). Stiglitz (1969) took Solow’s model to another
level by analyzing how different savers’ wealth and income evolved. In his
model each agent follows his or her private decision role and the economy
approaches a balanced growth solution. Obviously different but constant
saving propensities make the aggregate saving propensity non-constant and
dependent on income distribution so that multiple and unstable equilibria
can occur. However, qualitative dynamics are still simple.

More recently, in Bohm & Kaas (2000) the role of differential simple
savings behavior as proposed by Kaldor (1956) and its distribution effects
with regard to stability of stationary steady states has been investigated for
the discrete-time Solow growth model. The authors show how instability and
topological chaos can be generated in this kind of model.

In all the suggested works, growth models with constant labor force
growth rate have been investigated; however one implication of a constant
population growth rate is that population grows exponentially, which is
clearly unrealistic. For this reason, many authors consider it more realis-
tic to describe the population growth using growth functions different from
the exponential growth one. Verhulst (see Schtickzelle and Verhulst 1981)
was the first who proposed to model population growth with the logistic
equation. Other authors made the same choice: Accinelli and Brida (2005)
analyze the neo-classical Solow model with growth of population described
by a generalized logistic equation (Richard’s law), Faria (2004) studies the
Ramsey model with logistic growth.
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A further development is in Brianzoni Mammama Michetti (2006) where
a similar model to that studied in Bohm and Kaas (2000) has been investi-
gated under the assumptions of CES production function and the labor force
growth rate not being constant (in particular a model for density dependent
population growth described by the Beverton-Holt equation1 has been con-
sidered2). The model obtained is then a bidimensional autonomous dynamic
system; the authors proved that multiple equlibria are likely to emerge, and
they provided conditions on the parameters. They also showed how fluctua-
tions and complicated dynamics may arise when the elasticity of substitution
between the two production factors drops below one.

In the present work a triangular system (T,R2
+) is proposed to model the

evolution of capital accumulation and population growth rate in a discrete-
time Solow growth model. More precisely, the study herewith presented
assumes differential savings as in Bohm and Kaas (2000),3 CES production
function as in Brianzoni S., Mammana C. and Michetti E. (2006) and, finally,
a recurrence f(n) describing population dynamics, having a unique globally
asymptotically stable fixed point. In fact the less convincing element of the
works above mentioned is that assigned functions (i.e. the logistic or the
Beverton Holt equation) have been used to describe the population dynamic
evolution, while, more realistically, the exact law governing population dy-
namics is not known in general but only its properties are noted (i.e. that a
steady state growth rate will be reached in the long run).

According to such considerations and on the basis of the results already
attained, we study the more realistic growth model characterized by a generic
law for population dynamics. Consequently we generalize some results ob-
tained in Brianzoni S., Mammana C. and Michetti E. (2006) which have
been extended to each iterative scheme for population dynamics which is
differentiable and having a unique globally stable fixed point.

The analysis of the dynamics characterizing our triangular system is not
a simple thing, as most of the results cannot be expressed in analytical form;
this obstacle has been overcome by reducing the two-dimensional system to
a one-dimensional map that represents a limiting form. In particular it is
proved that a global attractor for system T does exist and it can be searched
using the limiting map. Furthermore, since the limiting map is the restriction

1See Beverton and Holt (1957).
2The Beverton-Holt model in discrete time is equivalent to logistic model.
3We differentiate saving rates across the functional distribution of income, consequently

it is implicitly assumed that workers and capitalists are different individuals. Furthermore
our model does not assume private agents engage in explicit optimization decisions when
undertaking their saving-consumption decisions.
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of system T to the line n = n̄, being n̄ the equilibrium population growth rate,
in our work we are able to generalize the results obtained in growth model
with constant population growth rate to the ones with endogenic population
growth rate, if the process converges to a global attracting steady state.

The study of the dynamics exhibited by our model shows how the cap-
ital accumulation dynamics (and hence the growth patterns) are more and
more complex as the elasticity of substitution between the two production
factors is low enough, and that the map is chaotic if such elasticity tends to
zero. The Leontief production function is just the extreme example of this
observation.4 The results obtained aim at confirming that the production
function’s elasticity of substitution plays a central role in the creation and
propagation of complicated dynamics as in models with explicitly dynamic
optimizing behavior by the private agents.5

Furthermore an important role is played by the two propensities to save: i.
e. if workers save more than shareholders only simple dynamics are possible
while, in the opposite case, conditions for topological chaos to be owned are
pursued.

The paper is organized as follows. In section 2 we introduce the model.
In section 3 we prove theorems concerning global dynamics and the exis-
tence of a compact global attractor. In particular, we demonstrate that the
global attractor belongs to the invariant line n = n̄ so that T admits a
one-dimensional limiting form informing on the asymptotic dynamics of the
system. In section 4 we prove that the limiting map is chaotic for some values
of the parameter and we introduce some numerical simulations showing that
complex dynamics can be observed. Section 5 concludes our paper.

2 The model

Recall the following system (T,R2
+) describing capital per capita (k) and

population growth rate (n) dynamics6 of the model studied in Brianzoni S.,
Mammana C. and Michetti E. (2006), where T = (T1, T2)

4While considering production function with fixed portion we reach a similar conclu-
sions about cyclic behavior to that by Nashimura and Yano (1995) for the case of one
sector model.

5The survey paper by Becker (2006) covers many of these models.
6Labor force growth rate is described by the Beverton-Holt equation representing a

model for density dependent population growth (see Beverton and Holt, 1957) that has
been largely studied in Cushing and Henson (2001, 2002).
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T1(n) =
rh

h + (r − 1)n
n

T2(n, k) =
1

1 + n

[
(1− δ)k + (kρ + 1)

1−ρ
ρ (sw + srk

ρ)
]

δ ∈ (0, 1) is the depreciation rate of capital, sw ∈ (0, 1) and sr ∈ (0, 1)
are the constant saving rates for workers and shareholders respectively ρ ∈
(−∞, 1), ρ 6= 0 is a parameter related to the elasticity of substitution be-
tween labor and capital,7 h > 0 is the carrying capacity and r > 1 is the
inherent growth rate.

The previous system has been obtained while considering the standard,
neoclassical one-sector growth model where the two types of agents, workers
and shareholders, have different but constant saving rates as in Bohm & Kaas
(2000) and where production function f , mapping capital per worker k into
output per worker y, is of the CES type, that is

y = F (k) = (1 + kρ)
1
ρ . (1)

The present work is dedicated to the study of a generalization of the
model just described, since the Beverton–Holt equation T1(n) is replaced by
a generic map for population dynamics, as stated in the following definition.

Definition 2.1. T1(n) := f(n) is a continuous differentiable map having a
single positive fixed point n = n̄ globally asymptotically stable.

Here we model the evolution of the population growth rate n by an it-
erative scheme nt+1 = f(nt) such that ∀n0 ∈ R+ the steady state n = n̄ is
approached, i. e. limt→+∞ f t(n0) = n̄.

Such an iteration scheme represents a generalization of many equations
able to describe population dynamics often considered in economic applica-
tion (i. e. the Beverton-Holt equation or the logistic function as previously
underlined). Furthermore it is quite realistic to allow population growth rate
varying over time.

By considering function f , the final triangular map is given by

T :=





T1(n) = f(n)

T2(n, k) = g(n, k)
(2)

7Remember that the elasticity of substitution between the two production factors is
given by 1

1−ρ .
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where g(n, k) := 1
1+n

[
(1− δ)k + (kρ + 1)

1−ρ
ρ (sw + srk

ρ)
]
. If ρ < 0, we

assume g(n, 0) := 0 ∀n ∈ R+ for g being continuous. Map T is well de-
fined. In what follows we investigate qualitative and quantitative dynamic
properties of system (2).

3 Global dynamics

In this section we give conditions on the parameters for T having a global
attractor. Furthermore we will prove that T has a one-dimensional limiting
form having the same asymptotic behavior of T . Consequently the qualitative
asymptotic dynamics of T can be studied while considering its simpler one-
dimensional form.

First we determine the invariant sets of map T in order to discuss their
global stability. Remember the following definition.

Definition 3.1. Recall that a subset E ⊆ R2
+ is invariant (positively invari-

ant, negatively invariant) if T t(E) = E (T t(E) ⊆ E, E ⊆ T t(E)), ∀t ∈ Z+.

In the following statement we prove that T admits both an invariant and
a positively invariant set.

Lemma 3.2. The set E0 = {(n̄, k) : k ∈ R+} is invariant and the set
E = {(n, k) : |n− n̄| ≤ ε, k ∈ R+} is positively invariant for the mapping T .

Proof. E0 is invariant as mapping T is triangular and n = n̄ is a fixed
point for the one-dimensional map T1(n). Set E is positively invariant since
∀(n0, k0) ∈ E, T t(n0, k0) = (f t(n0), g

t(n0, k0)) ∈ E, ∀t ∈ Z+, as |n0 − n̄| ≤ ε
and n = n̄ is stable for g.

From this lemma it follows that any initial condition (n0, k0) belonging to
set E has an orbit which is bounded inside this set; furthermore the half-line
n = n̄ is mapped into itself by forward and backward iterations of T .

Consider the following definition of a global attractor.

Definition 3.3. A nonempty compact set C ⊂ R2
+ is the global attractor of

the dynamical system (T,R2
+) if the following conditions are fulfilled:

a. C is invariant with respect to (T,R2
+);

b. C attracts all the bounded subsets from R2
+. 8

8See Cheban D. (2004).
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We first consider system T with ρ ∈ (0, 1) and we prove the following
Theorem about the existence of a global attractor.

Theorem 3.4. If ρ ∈ (0, 1) and sr < δ then dynamical system (T,R2
+)

admits a compact global attractor.

Proof. Consider map g(n, k) as expressed in the following manner:

g(n, k) =
1

1 + n

[
(1− δ)k + (kρ + 1)

1−ρ
ρ (sw + srk

ρ)
]

=

=
1

1 + n

[
(1− δ + sr)k + (kρ + 1)

1−ρ
ρ (sw + srk

ρ)− srk
]

=

=
1

1 + n
[(1− δ + sr)k + h(k)k]

where h(k) := (kρ+1)
1
ρ

k
(sw+srkρ)

kρ+1
− sr. Since ρ is positive, limk→+∞ h(k) = 0

that is ∀γ > 0, ∃M > 0 such that |h(k)| < γ, ∀k > M . Consequently

g(n, k) <
1

1 + n
[(1− δ + sr + γ)k] < (1− δ + sr + γ)k

∀k > M . Define A := [n̄− ε, n̄ + ε]× [0, M ] then the trajectory {T t(n0, k0) :
t ∈ Z+} at least one time intersects the compact A, ∀(n0, k0) ∈ R2

+ with
k0 > M . In fact, if we suppose that this statement is false, then there exists
a point (n0, k0) ∈ R2

+ \ A such that T t(n0, k0) ∈ R2
+ \ A, ∀t ∈ Z+. Since

limt→+∞ f t(n0) = n̄, being n̄ globally stable for map f , then it must be

kt = gt(n0, k0) > M. (3)

Assume γ < δ − sr then

kt = gt(n0, k0) < (1− δ + sr + γ)tk0 −→ 0 as t → +∞. (4)

Equations (3) and (4) are contradictory. The contradiction obtained proves
that set A is attracting for system T .

To prove that A is a positively invariant set, assume k0 < M and γ <
δ − sr. Consequently, from (4), we have kt < k0,∀t ∈ Z+ so that kt <
M, ∀t ∈ Z+. Furthermore, since lemma 3.2 holds, compact set A is positively
invariant. Since A is a trapping region for T (i.e. a closed region positively
invariant) it follows that Λ = ∩t≥0T

t(A) is the global attractor.

We consider now the case ρ < 0 and we prove the following Theorem.
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Theorem 3.5. If ρ < 0 then the dynamic system (T,R2
+) admits a compact

global attractor.

Proof. Consider map g(n, k) = 1
1+n

[(1− δ)k + j(k)] where j(k) := (kρ +

1)
1−ρ

ρ (sw + srk
ρ). limk→+∞ j(k) = sw, being ρ < 0, so that ∀η > 0, ∃L > 0

such that |j(k)−sw| < η, ∀k > L. Similarly to the previous proof we obtain:

g(n, k) <
1

1 + n
[(1− δ)k + sw + η], ∀ k > L

and

kt = gt(n0, k0) < (1− δ)tk0 + (sw + η)
t−1∑
i=0

(1− δ)i −→ sw + η

1− δ

as t → +∞. For the arbitrary of η we can conclude in a similar manner to
that of the previous theorem.

Since T is a continuous system which maps the trapping set K := [n̄ −
ε, n̄+ ε]× [0, N ] 9 into itself, then T has at least one fixed point in K in cases
ρ < 0 and ρ ∈ (0, 1) ∩ {sr < δ} that will be considered from now on.

According to the previous theorems, we can conclude that the global
asymptotic dynamics exhibited by system T must be investigated in the
rectangle K. Furthermore, while considering that E0 and K are respectively
invariant and positively invariant for T , we can deduce that also the segment
S = E0 ∩K is positively invariant.

The global attractor Λ = ∩t≥0T
t(K) lies in the rectangle K = [n̄− ε, n̄ +

ε] × [0, N ], more stronger Λ ⊆ S = {(n̄, k) : 0 ≤ k ≤ N}. In fact, if this
statement is false, then the distance d̄ := max(n,k)∈A |n − n̄| will be strictly
positive and an arbitrary small ε can be chosen such that 0 < ε < d̄, so that
A 6⊆ K in contradiction with theorems 3.4 and 3.5.

More precisely the asymptotic states for system T , as m-cycles, are related
to m-cycles of the limiting form map defined as follows:

gn̄(k) := g(n̄, k). (5)

This can be intuitively justified on the basis that the sequences nt are con-
vergent to n̄ as proved in following theorem.

9Being N = M if ρ < 0 and N = L if ρ > 0 as defined in the proofs of theorems 3.4
and 3.5.
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Theorem 3.6. If T has an m-period cycle, namely

Om = {(n0, k0), (n1, k1), ..., (nm−1, km−1)},
then Om ∈ S.

Proof. Observe that if i ∈ [0,m − 1] exists such that ni = n̄, then ni = n̄
∀ 0 ≤ i ≤ m− 1.

To prove the theorem, we suppose that n̄ 6= n0. Since n0 is a periodic point
with period m, then fm(n0) = n0 and f tm(n0) = n0 ∀ t ∈ Z+. Consequently
limt→+∞ f tm(n0) = n0, but this statement is contradictory with the global
asymptotic stability of the fixed point n̄ for f . Moreover, ki ≤ N , ∀ 0 ≤ i ≤
m− 1 being K globally attracting and positively invariant.

Remembering the previous result stated in theorem 3.6, we define two
sequences

Om = {(n̄, k0), (n̄, k1), ..., (n̄, km−1)} (6)

and the correspondent

O′
m = {(k0), (k1), ..., (km−1)} (7)

and we consider gn̄ being the one-dimensional continuous map in R+ defined
in (5). As a consequence of theorem 3.6 it is straightforward to prove that
Om is an m-cycle of period m ≥ 1 of T if and only if O′ is an m-cycle of
period m ≥ 1 of gn̄.

It is an important result since in order to find the periodic solution owned
by T we can consider its one-dimensional limit form gn̄.

The question which arises is whether a similar result applies when con-
sidering the stability of periodic cycles. The Jacobian matrix of T is the
triangular matrix:

DT (n, k) =

(
f ′(n) 0
∂g
∂n

(n, k) ∂g
∂k

(n, k)

)
. (8)

As we know that f has a single fixed point n = n̄ globally asymptotically
stable we are interested in evaluating DT in points of that line.

Consider first Om as in (6) with m = 1. We have

DT (n̄, k0) =

(
f ′(n̄) 0
∂g
∂n

(n̄, k0)
∂g
∂k

(n̄, k0)

)
. (9)

where (n̄, k0) is a fixed point of T . The eigenvalues are λ1 = f ′(n̄), that is
lesser than one in modulus, and λ2 = ∂g

∂k
(n̄, k0) = g′n̄(k0). It follows that
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every fixed point of T is a stable node if and only if k0 is an attracting fixed
point of the one-dimensional map gn̄.

The same is true for an m−cycle with m > 1. In fact we know that (6)
is a m−cycle of T if and only if (7) is a m−cycle of gn̄ and an m−cycle of T
is attracting if and only if the m fixed points of the map Tm are attracting.
Then we consider the Jacobian matrix of Tm: DTm = DT (n̄, k0) ·DT (n̄, k1) ·
... ·DT (n̄, km−1) whose eigenvalues are λ

(m)
1 =

∏m−1
i=0 g′n̄(ki), (i = 0...m − 1)

and λ
(m)
2 = [f ′(n̄)]m. As theorems 3.4 and 3.5 hold, conclusions about the

global stability can be easily given in the following Theorem.

Theorem 3.7. Om is an attracting m-cycle of period m ≥ 1 of T if and only
if O′

m is an attracting m-cycle of period m ≥ 1 of gn̄.

The theoretical study herewith proposed is interesting in that it allows
conclusions to be drawn about growth models with endogenic population
growth. In fact, if the population dynamics approach a globally stable fixed
point n = n̄, then models with constant population growth rate n = n̄
have the same asymptotic dynamics of those with non-constant population
growth having a globally stable equilibrium and, consequently, the strong
assumption of constant labor force growth rate is not too restrictive when
considering the long run economy.

4 Bifurcations and chaos.

Our previous considerations come from the identification of the restriction of
T to the line n = n̄ with the one-dimensional map

gn̄(k) =
1

1 + n̄

[
(1− δ)k + (kρ + 1)

1−ρ
ρ (sw + srk

ρ)
]
. (10)

The equivalence between asymptotic dynamics of T and those of gn̄ proved in
section 3 is clearly useful in order to define which are the possible attracting
sets of T .

For instance if gn̄ has a unique fixed point k̄ in S̄ := [0, N ] locally at-
tracting and no other invariant sets in S̄ then every orbit of T converges to
k̄. The last statement gives a sufficient condition for the global convergence
to the steady state of the growth model with endogenous population growth.
Similarly if gn̄ has a unique attracting m-cycle in S̄ then it is an attracting
m-cycle of T . The same is true for any attracting set.

These results are useful in applications since they permit us to obtain
complete understanding of the asymptotic behavior of the growth dynamics
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from the study of the one dimensional map gn̄(k). Consequently, by knowing
the geometrical properties of gn̄

10 we can draw conclusions about the invariant
sets of T and their stability depending on all the parameters of the system.
Furthermore the known results about local stability of the attractors of gn̄

can now be extended to more general consideration on the plane R2
+.

Precisely, for some values of the parameters gn̄ is strictly increasing, con-
sequently its invariant sets are fixed points at most, they could be stable or
unstable: the seconds separate the basins of attraction of the stable ones.
We recall such cases.

Let gn̄ given by (10) and ρ ∈ (0, 1). If sr < δ then theorem 3.4 holds,
moreover map gn̄ has one positive fixed point which is asymptotically stable.
Taking into account the results herewith obtained, we conclude that all the
trajectories approach the equilibrium, not only the ones starting from some
initial conditions (i. e. from a neighborhood of the steady state). Con-
sequently (n̄, k̄) is the unique global attractor of T . No more complicated
asymptotic dynamics are exhibited if ρ is positive.

This result is strictly related to the capital income monotonicity prop-
erty.11 In fact a sufficient condition for (ktF

′(kt))
′ being positive is that the

production function’s elasticity of substitution is greater than or equal to one.
This well-known result applies to our model if ρ ∈ (0, 1), in fact if capital
income is monotonically increasing in capital, also gn̄ is so, then cycles and
chaos cannot appear.12 Obviously if ρ < 0 (and the elasticity of substitution
is lesser than one), capital income monotonicity may not be verified, and the
stationary equilibrium could fail to be unstable and complicated dynamics
may arise (see Becker and Foias 1998).

Let ρ < 0. In the cases {δ + n̄ < sr < sw} ∩ {ρ ≥ sr

sr−sw
} and

{sr > max(sw, δ + n̄)} ∩ {ρ ≥ −sw

sr−sw
} map gn̄ has a repelling fixed point

at the origin and another one k̄ > 0 that is locally asymptotically stable.
Remembering theorem 3.5 we can conclude that the positive fixed point at-
tracts any trajectory starting from an initial condition with k0 6= 0 (see figure
1, panel (a)) and the attractor Λ consists of the two fixed points.

Moreover for {sr < sw} ∩ {ρ < sr

sr−sw
}, map gn̄ may have up to three

fixed points: k = 0 and 0 < k̄1 < k̄2. If they all exist, k = 0 and k̄2

are asymptotically stable. Obviously trajectories starting from an initial

10These properties have been studied in Brianzoni S., Mammana C. and Michetti E.
(2006).

11According to this property if capital income is increasing in capital, no fluctuations
are possible.

12Becker (2006) presents a detailed description of this relationship in heterogeneous
agent models.
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Figure 1: (a) Map gn̄ with δ = 0.29, h = 0.015, sw = 0.9, sr = 0.8, ρ = −7. k̄
is the asymptotically stable fixed point. (b) Map gn̄ with δ = 0.29, h = 0.015,
sw = 0.9, sr = 0.2, ρ = −2. Three fixed points exist where the repelling one
k̄1 separates the basins of attractions of 0 and k̄2 respectively. Curve gf and
fold bifurcation.

condition k0 < k̄1 will approach k = 0, while trajectories starting from
an initial condition k0 > k̄1 will approach k̄2. Consequently the attractor Λ
consists of three pieces, the fixed points of T . Remember that in the previous
section we stressed that the dynamics of map T are governed by map gn̄ only
asymptotically so that it is a good approximation only in the long run. Note
that for certain values of the parameters a fold bifurcation occur, see figure
1 panel (b).

The results proved in Brianzoni S., Mammana C. and Michetti E. (2006)
enable us to conclude that if ρ < 0 and sr < sw no complex dynamics can be
exhibited. In fact no fluctuations are possible if the elasticity of substitution
is lesser than one and workers save more than shareholders. This conclusion
might appear to be in contrast with the possible failure of capital income
monotonicity property being ρ < 0. Nevertheless it is especially in this case
where the two different propensities to save play a role in our paper. In fact,
if sr − sw < 0, map gn̄ is an ascending monotonic function independently of
the elasticity of substitution’s sign of magnitude.

In order to obtain cycles or chaos we have to consider ρ < 0 and sr > sw,
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such a case needs in fact more attention since g′n̄ sign may change. In this last

case we can consider a further result, for example, if ρ ∈
[
− sw

sr−sw
, 0

)
function

gn̄ is increasing so that only simple dynamics are exhibited, consequently in
what follows we focus on the case ρ < − sw

sr−sw
.13 Observe that a decline in

capital income as capital increases represents a source of fluctuations in our
model and that it is strictly related to the elasticity of production function:
the elasticity of substitution must be pushed sufficiently below one in order
for the non-monotonicity in capital income to be fulfilled and fluctuations to
be exhibited.

Since map gn̄ is quite complicated to be studied analyticaly, in what
follows we consider an approximation of such a map that permits us to obtain
a further result about topological chaos for map gn̄. We use the following
arguments.

Consider that the Leontief function F l = min{1, k} is approximated by
the family of concave production function

Fρ(k) = (1 + kρ)
1
ρ , ρ < 0.

If k 6= 1 it is straightforward to show that

lim
ρ→−∞

Fρ(k) = F l(k), lim
ρ→−∞

F ′
ρ(k) = (F l)′(k). (11)

Consequently gl given by

gl :=





gl
1(k) = 1

1+n̄
(1− δ + sr) k, if k < 1

gl
2(k) = 1

1+n̄
[(1− δ)k + sw] , if k > 1

(12)

is the map for the approximation of gn̄(k). Furthermore, because (11)
holds, then gn̄(k) → gl, ∀k 6= 1 if ρ → −∞. Define gl

1(1) := limk→1− gl and
gl
2(1) := limk→1+ gl.

Recall Brianzoni S., Mammana C. and Michetti E. (2006), where a propo-
sition is proved stating sufficient condition for gn̄ being bimodal (that is it
admits a maximum point kM and a minimum point km with kM < km) when
ρ is small enough (i.e. ∀ρ < ρ1).

In the following theorem we prove that the unique positive fixed point k̄
of gn̄ belongs to the interval (kM , km) if ρ is small enough.

Theorem 4.1. Let sw < δ + n̄ < sr then ρ̄ < 0 does exist such that kM <
k̄ < km, ∀ρ < ρ̄.

13See again Brianzoni, Mammana and Michetti (2006).

12



Proof. It is easy to prove that a value ρ2 exists such that g′n̄(1) < 0 ∀ρ < ρ2,
and consequently kM < 1 < km.

Since gn̄(k) → gl, ∀k 6= 1 if ρ → −∞ then ∀ε > 0, ρ3 exists such
that −ε < gn̄(k) − gl(k) < ε, ∀ρ < ρ3 and k 6= 1. Let k = kM then
gl
1(kM)−ε < gn̄(kM) < gl

1(kM)+ε. Since kM < gl
1(kM), being δ+n̄ < sr, then

kM − ε < gn̄(kM). Let k = km then gl
2(km)− ε < gn̄(km) < gl

2(km) + ε. Since
km > gl

2(km), being sw < δ+n̄, then gn̄(km) < km+ε. Let ρ̄ := min{ρ1, ρ2, ρ3}
then for the arbitrary of ε the statement is proved.

According to the previous theorem, we conclude that if ρ is small enough,14

map gn̄ is a Z1 − Z3 − Z1 map, where Zi is an open interval the points of
which have i distinct preimages.

On the other hand, gl is of the kind Z1 − Z2 − Z1; in this case Z2 is the
interval (gl

2(1), gl
1(1)) (absorbing segment), the first rank critical points are

gl
2(1) = 1−δ+sw

1+n̄
and gl

1(1) = 1−δ+sr

1+n̄
. Every initial condition k0 6= 0 belonging

to Z1 generates an iterated sequence which after a finite number of iterations
penetrates inside Z2 and tends toward an attractor located on this absorbing
segment.

We now want to prove that parameter values exist such that the limiting
map gn̄ is chaotic. Consider the Leontief production function F l for which
the time one map is (12), then the following considerations hold.15

First notice that if sw < δ + n̄ < sr then gl
2(1) < 1 < gl

1(1). Furthermore
gl
1(1) = gl

2(1) + 4s
1+n̄

, where 4s = sr − sw. Define γ = 1 − gl
2(1), so that for

γ sufficiently small one has 1− gl
2(1) small and gl

1(1)− 1 close to 4s
1+n̄

.

In particular, for k0 > 1 close to one has (see figure 2 panel (a)):

gl(k0) < 1 < k0 < (gl)3(k0) < (gl)2(k0).

Because of limρ→−∞ gn̄(k) = gl(k) ∀k 6= 1, it follows that k0 exists such
that:

gn̄(k0) < k0 < g3
n̄(k0) < g2

n̄(k0)

for ρ sufficiently small. Being gn̄ continuous then, for the well known
theorem of Li and Yorke, there exists a cycle of every order m = 1, 2, 3, ...,
which implies the existence of topological chaos,16 as stated in the following
theorem.

14That is the elasticity of substitution between the production factors is small enough.
15For further details see Bohm and Kaas (2000).
16See Day (1994).
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Figure 2: (a) Overshoot conditions with Leontief technology. (b) K-L stair-
case diagram of gn̄ being ρ = −50, δ = 0.4, n̄ = 0.1, sw = 0.1, sr = 0.8. A
three period cycle is exhibited.

Theorem 4.2. Let sw < δ + n̄ < sr, then ρ̃ < 0 does exist such that gn̄

exhibits topological chaos ∀ρ < ρ̃.

In the previous theorem, we found that a lower unbounded set does exist
such that map gn̄ is topologically chaotic for all ρ in this set. It states a neces-
sary condition for chaos to be observed in our model. It is straightforward to
prove that theorem 4.2 holds if the elasticity of substitution falls sufficiently
below one and the capital income monotonicity condition fails to hold (since
ρ is small enough). The Leontief-fixed coefficient production case is the ex-
treme example of the decline in the elasticity of substitution between two
factors and hence of the failure of monotonicity property of capital income.

We now consider the Koneig-Lamerary staircase diagram of map gn̄ in
figure 2 panel (b). The trajectory starting from a generic initial condition
shows that a three period cycle is approached. Consequently, map gn̄ is
topologically chaotic17 according to what has been proved in the previous
theorem.

Since the analytic form of the limiting map gn̄ is quite complicated, the
dynamic behavior when varying one or more parameters of the map must be

17See Li and Yorke (1975).
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Figure 3: (a) Map gn̄ and g2
n̄: period doubling bifurcation at ρ = ρ2 ' −26.5

with δ = 0.4, n̄ = 0.1, sw = 0.1, sr = 0.6. (b) Bifurcation diagrams of map
gn̄ with respect to ρ and the other parameters as in panel (a): more complex
dynamics can be observed as ρ decreases.

analyzed numerically.

First, when studying the bifurcations of map gn̄ we consider the varia-
tions affecting coefficient ρ which represents the only parameter presented in
the production function and related to the elasticity of substitution of the
two factors. Furthermore, as proved in theorem 4.2, we expect to observe
more complex dynamics when ρ is sufficiently small so that the elasticity
of substitution between capital and labor is close to zero. We also consider
parameter values such that sw < δ+ n̄ < sr that is the hypotheses of theorem
4.2 are fullfilled.

Notice that as ρ decreases, into the second iteration of gn̄ more fixed
points than k̄ can be created via a fold bifurcation for appropriate parameter
values i.e ρ = ρ2: a stable cycle-2 arises able to attract any orbit originating
from an i. c. k0 6= 0, (see figure 3 panel (a)).

Consider also the set of bifurcations as ρ ∈ (−70,−10) for suitable values
of the other parameters (see figure 3 panel (b)). The fixed point k̄ is stable
when ρ > ρ2; at ρ = ρ2 it loses stability via flip bifurcation. This bifurcation
is the first one of the well known period doubling route to chaos. The proper-
ties of the limiting map gn̄ are such that when ρ decreases, dynamics may get
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Figure 4: (a) Bifurcation diagrams of map gn̄ with respect to ∆s at δ = 0.05,
n̄ = 0.05, sw = 0.05 and ρ = −100. Complexity increases as ∆s increases.
(b) Cycle cartogram in (∆s, ρ) plane for δ = 0.05, sw = 0.05 and n̄ = 0.05.
Color c-i represents the cycle of period i owned by the map for a given initial
condition while color Ch indicates that the trajectory is probably chaotic.

increasingly complicated. At the limit, if ρ → −∞, map gn̄ is approximated
by gl that is topologically chaotic as stated in theorem 4.2.

The arguments used to prove Theorem 4.2 aim at confirming that the
quantity ∆s = sr−sw plays an important role with respect to chaotic patterns
to be exhibited by the model. First consider that the hypothesis of theorem
4.2 holds if

0 < δ + n̄− sw < ∆s (13)

and consequently when assuming δ + n̄− sw being constant (and, obviously,
lesser than one) then as ∆s increases relation (13) is going to hold and chaos
is likely to emerge as illustrated in figure 4 panel (a) where the bifurcation
diagram with respect to ∆s is presented for given values of the other param-
eters.

Furthermore observe that condition (13) is surely verified if ∆s is great
enough (that is the difference in savings between shareholders and workers
is relevant) and that in such a case if ρ is small enough (that is the elasticity
of substitution between the two production factors is close to zero) map gn̄

is topologically chaotic. Consequently numerical simulations when varying
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Figure 5: (a) Bifurcation diagrams of map gl with respect to ∆s at δ = 0.05,
n̄ = 0.05, sw = 0.05. (b) Cycle cartogram in (∆s, δ) plane for n̄ = 0.05
and sw = 0.05. Color c-i represents the cycle of period i owned by the map
for a given initial condition while color Ch indicates that the trajectory is
probably chaotic.

both ∆s and ρ are interesting to be observed.

Figure 4 panel (b) contains a cycle cartogram showing a two parametric
bifurcation diagram qualitatively. Each color represents a long-run dynamic
behavior for a given point on the parameter plane (∆s, ρ) and for a generic
initial condition. Also note that, as is typical in one-dimensional bimodal
dynamic maps, several period doubling and period halving cascades exist
(see Hommes, 1994).

Finally in figure 5 the limiting map gl as defined in (12) is considered.
In such a case ρ → −∞ so that, given the equilibrium population growth
rate n̄ and assigned a value (sufficiently small) to the working propensity
to save sw, only parameters δ and ∆s have to be considered. In panel (a)
the bifurcation diagram with respect to ∆s is presented. The numerical
simulation confirms that quite complicated dynamics emerges with Leontief
technology. In panel (b) both ∆s and δ are varying. Obviously only with
∆s >> δ chaotic patterns are presented as stated in theorem 4.2.
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5 Conclusions

The results of our analysis show that the one-sector growth model with dif-
ferential savings and non-constant population growth rate, can exhibit fluc-
tuations or even chaotic patterns.

The labor force growth rate is endogenous and described by a generic
iterative scheme having a unique positive globally stable equilibrium n̄. The
study herewith presented aims at confirming the existence of a compact global
attractor for system T along the invariant line n = n̄. Consequently asymp-
totic dynamics of growth models with constant population growth rate can
be related to those with non-constant population growth if the steady state
rate is globally stable.

Furthermore, the role of the production function’s elasticity of substitu-
tion and its relation to the capital income monotonicity property, have been
related to the creation and propagation of complicated dynamics. In fact as
the CES elasticity of substitution parameter falls below one, capital income
is not surely monotonic and fluctuations may arise. The fixed coefficient
production function case is just the extreme example of this observation.
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