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dependent observations. In a hierarchical Bayesian framework, we show how Reversible
Jump Markov Chain Monte Carlo techniques can be used to estimate the parameters of a
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1 Introduction

A Hidden Markov Model (HMM) or Markov Switching Model is a mixture
model whose mixing distribution is a finite state Markov Chain. These mod-
els provide useful representations of dependent heterogeneous phenomena
and, for this reason, they are applied in many different fields, such as econo-
metrics (Hamilton, 1989; Chib, 1996; Krolzig, 1997; Billio et al., 1999), biol-
ogy (Leroux and Puterman, 1992), genetics (Churchill, 1995), neurophysiol-
ogy (Fredkin and Rice, 1992), speech processing (Rabiner, 1989). In particu-
lar, HMMs have been successfully applied in finance: financial prices usually
show non linear dynamics which are often due to the existence of two or more
regimes within which returns and/or volatilities display different behavior.
Using these models, Rydén et al. (1998), reproduce most of the stylized
facts about daily series of returns while Rossi and Gallo (2006) provide ac-
curate estimates of stochastic volatility. Engel and Hamilton (1990) model
segmented time-trends in the US dollar exchange rates via HMMs. Robert et
al. (2000) use HMMs to study daily returns of the S&P index, assuming the
existence of different regimes characterized by different levels of volatility.

The main problem associated with HMMs is to choose the number of
regimes, i.e. the number of generating data processes, which differ one from
another just for the value of the parameters. In a classical perspective, choos-
ing the number of regimes would require hypothesis testing with nuisance
parameters, identified only under the alternative. Thus, the regularity con-
ditions necessary to apply asymptotic theory do not hold and the limiting
distribution of the likelihood ratio test must be approximated by simulation,
an approach demanding enormous computational efforts. Penalized likeli-
hood methods such as the Akaike and Bayesian information criteria are less
demanding, though, they produce no number quantifying the confidence in
the results, such as a p-value.

In a Bayesian context there are different suggestions for choosing the
number of regimes in a HMM. For example, Otranto and Gallo (2002) adopt
a Bayesian nonparametric approach, based on Dirichlet processes. Since a
distribution realised from a Dirichlet process is almost surely discrete, a ran-
dom sample drawn from it has positive probability of ties, providing a flexible
model to cluster the observations into different regimes. The posterior distri-
bution of the number of regimes is estimated through the simulated posterior
distribution of the number of clusters. However, a drawback of this approach
is that a single parameter controls the variability and the clustering, creating
difficulties for the prior specifications. Moreover, the Dirichlet process is well
known to favor, a priori , unequal allocations (see, for example, Green and
Richardson, 2001) and this phenomenon turns to be much more dramatic



with the growth of the number of observations. Often, the unbalance in the
allocation distribution persists also a posteriori. Furthermore, it can be eas-
ily proved that the predictive distribution of a future observation has a non
null probability of being equal to a past observation and this is clearly an un-
realistic assumption when the observed data are assumed to be realizations
of a continuous distribution. Finally, the posterior distributions obtained
by non parametric approaches are very sensitive to the specification of the
priors: the number of parameters being infinite, the quantity of information
provided by data on such parameters is necessarily limited and the likelihood
never dominates over the prior.

A natural alternative to the Dirichlet process model is to use mixtures
based on multinomial allocations. Following Robert et al. (2000) and
Richardson and Green (1997), we use a fully Bayesian analysis, based on the
Reversible Jump (RJ) algorithm, developed in Green (1995), which allows
for the change of dimension of the parameter space, changing the number
of regimes from one iteration to the other. The algorithm allows to esti-
mate the joint posterior distribution of the number of regimes and of all the
parameters.

The paper is organized as follows: details of the prior modeling are dis-
cussed in Section 2; Section 3 describes the MCMC algorithm used to sim-
ulate the joint posterior distribution of all the parameters of the model,
including the number of regimes; Section 4 illustrates the Bayesian approach
for inference and forecasting; conclusions are reported in Section 5.

2 The model

In this section, we present the proposed hierarchical HMM and, in a bayesian
framework, we discuss the prior assumptions on the parameters of the model.

2.1 Hidden Markov Models

Let y = (y;){_, be the vector of observed variables, indexed by time. HMMs
assume that the distribution of each observed data point y; depends on an
unobserved (hidden) variable, denoted s;, that takes on values from 1 to
k. The hidden variable s = (s;)7_; characterizes the “state” or “regime” in
which the generating process is at any time t. HMMs further postulate a
Markov Chain for the evolution of the unobserved state variable and, hence,
the process for s; is assumed to depend on the past realizations of y and s
only through s; 1:

p(se = jlsi1 = i) = Ay, (1)



where )\;; is the generic element of the transition matrix A = (\;;), with
vector of stationary probabilities 7 satisfying w’A = #’. Figure 1 illustrates
the dependency structure in a HMM, showing that each observation y; is
conditionally independent of all other unobserved and observed data, given
Sy
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Figure 1: Graphical representation of HMM dependencies. The conditional
distribution of the value at each node, given the values of all the other nodes,
depends only on the nodes to which it is connected by an edge.

As a generating process, we assume that, if s; = i, y; is a realization from
a N(p,02), where p; and o? are respectively the mean and the variance of the
1-th regime. Thus the marginal distribution for an observation y;, conditional
on weights m = (m;)¥_,, means g = (u;)%_, and standard deviations o =

(O-i)f;:lv is
k
Y|, @, o~ Zﬂ'ﬂﬁ(j i, 02) independently for t = 1,2,..., 7, (2)
i=1

where ¢(-; i, 02) is the density of the N(u;,0?). Notice that the model in
(2) can be analogously expressed as

Uil s, oo~ B s, 03,). (3)

Integrating out s; in (3), using its stationary distribution, leads back to (2).

Finally, we assume that the number of components k (i.e. the number

of regimes) is unknown and subject to inference. Notice that for k£ = 1 the
model in (2) reduces to a simple random walk with drift.

2.2 Bayesian approach

As mentioned before, we adopt a Bayesian approach which implies that if @
is the vector of the parameters describing the model (including k), all the
required inference is based on the posterior distribution of 8. Given the data
set y, from the Bayes’ theorem:

p(8ly) o< p(y|0)p(0)

where p(y|@) is the likelihood and p(@) is the prior distribution of the pa-
rameters.



2.3 Prior distributions

In order to get weakly informative priors for the parameters, we introduce
an hyperprior structure in order to make only minimal assumptions on the
data. In particular, we assume a priori :

pilo? ~ N(& ko?) and 0,2 ~ Ga(n, () independently Vi =1,...  k,

where the Gamma distribution is parametrised so that the mean and the
variance are 1/¢ and 7/¢? respectively. For both p and o we introduce an
additional hierarchical level, implying that their supports are not a priori
fixed. A good distribution for x seems to be the one assigning a high proba-
bility to the values within the interval [0, 1] (in order to reduce the impact of
0?). At the same time, a distribution for x with infinite variance would not
steer results in a specific direction and would guarantee a certain degree of
uncertainty. Thus we use an Inverse Gamma with hyperparameters ¢ and r.
A possible choice of these two parameters is, for example, ¢ = 2 and r = 2.
The hyperparameter ¢ follows a Gamma distribution with parameters f and
h, with n > 1 > f and h a small multiple of 1/R? where R is the length
of the range of data. Finally, the hyperparameter £ can be set equal to the
mid-point of this range.

The rows of the transition matrix are, a priori , assumed to be distributed
as a Dirichlet:

Aij ~ D(9), independently Vi = 1,... k

where § = (5j)§:1. In particular, we assume §; = 1, V7, so that each row of
the transition matrix is a priori uniform on the simplex of dimension k.
The number of components k is a priori uniformly distributed on the
values {1,2,..., K}, where K is a pre-specified integer. As in other mixture
model contexts (or indeed in almost all model choice problems), it seems dif-
ficult to argue objectively for a specific prior for k. Our choice here, similarly
to Richardson and Green (1997), is due to the consideration that a uniform
prior allows to adjust the results in order to get posteriors corresponding
to other priors, by importance sampling (see, for example, Hammersley and

Handscomb, 1964).

2.4 Complete hierarchical model

The joint distribution of all the variables conditional on fixed hyperparame-
ters may be written as:

p<k7A'7l’l’7a-7S7y7C?H‘67€777’f7h7r7q) -
= p(k)p(Alk, 8)p(s|A)p(plk, &, &, a)p(alk,n, Q)p(Clf, h)p(klg, )p(yls, u, o),
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where

T
p(s|A) = p(s1|A) Hp Selsi—1, A
t=2

with p(s|s;_1, A) given by (1) and p(s; = i|A) = m;, and

T

p(y‘sa 22 O') = H ¢<yt7 Hosy s O-i)'

t=1

The prior distributions p(k), p(Alk,8), p(p|k,§, K, ), p(a|k,n.¢), p(C|f, k)
and p(k|q,r) are all given in Section 2.3.
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Figure 2: Directed acyclic graph for the complete hierarchical model.

The complete hierarchical model is showed in Figure 2 as a directed
acyclic graph (DAG). We follow the usual convention that square boxes rep-
resent fixed or observed quantities and circles represent the unknowns.



3 Computational implementation

The complexity of the mixture model presented requires Markov Chain Monte
Carlo (MCMC) methods to approximate the posterior distribution. A de-
tailed description of these computational methods can be found in Tierney
(1994) and Besag et al. (1995).

In order to generate realizations from the posterior joint distribution of
all the parameters, we alternate the following moves at each sweep of the
MCMC algorithm:

(a) update the transition matrix A,
(b) update the state variables s,

(c) update the hyperparameter ¢,

(d) update the standard deviations o,
(e) update the hyperparameter x,

(f) update the means p,

(g) update the number of regimes k.

The first six moves are fairly simple and all performed through Gibbs sam-
pling. We will go through them rather quickly, while more attention will be
devoted to the last move, a variable dimension move, requiring the use of the
RJ method (Green, 1995).

3.1 Gibbs moves

Move (a) follows Robert et al. (1993): the i-th row of A is sampled from a
Dirichlet distribution D(d; + n;1, . . ., 0k + nyx), where

T_1
nij =Y H{si =i 5001 = j}
t=1

is the number of transitions from regime i to regime j; I{-} is the indicator
function.

In (b), the standard solution for updating the state variable would be to
sample si,..., s, one at a time from ¢t = 1 to t = T, drawing new values
from their full conditional distribution

p(st = 1| e ) X )‘St71i¢(yt; i, U?)Aisml
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where ‘- - -7 denotes ‘all other variables’; for ¢ = 1, the first factor is replaced
by the stationary probability m; and, for ¢ = T', the last factor is replaced by 1.
However, we preferred to sample s directly from p(s|y, A), using a stochastic
version of the forward-backward recursion (see Scott, 2002). This leads to
a faster mixing algorithm because fewer components are introduced into the
Gibbs Markov Chain. The forward recursion produces matrices Py, ..., Py,
where P, = (py;) and puj = p(si-1 = 4,8 = jly1, ..., y, A). In words, P,
is the joint distribution of (s;_; = 4,s; = j) given model parameters and
observed data up to time ¢. P; can be computed from P;_; as

Ptij X p(st—l = i’ St = j7 ytlyb cee 7yt—17A) =
- p(st—l - ilyl) e Y1, A>Al]¢(yta My 0]2)

where proportionality is reconciled by ), Zj pu; = 1 and where p(s;—; =
ilyry .1, A) = Z]. Di—14; can be computed once P;_; is known. The
recursion starts computing p(sy = ily1, A) o< ¢(y1; i, 07 )m; and thus Ps.

The stochastic backward recursion begins by drawing sr from p(sr|y, A),
then recursively drawing s; from the distribution proportional to column s,
of P;y1. In this way, the stochastic backward recursion allows to sample from
p(s|y, A), factorizing this distribution as

T—1
p(s‘ya A) = p(ST’?L A) H p(STft‘STa ey ST—t+1, Y, A)
t=1
where
p(sr—t =ilsp, ... 5741, Y, A) = p(sr—s = i|sr—41, Y1, - - -, Yr—t41, A)

X Pr—t+14,s7—¢41-

In (¢) we update ¢ by a Gibbs move, sampling from its full conditional:

k
(|-~ Ga <f+kn,h+za[2>.

i=1

2 2

In (d) we update o;

from its full conditional

independently using a Gibbs move, sampling o;

1 1 1
Ule---NGa<n+§(m+1),C+§ Z(yt_,ui)Q“'ﬂ(ﬂi_f)Z)a

t:sp=1

where n; = #{t : s, = i} is the number of observations currently allocated
to the i-th component of the mixture.
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In (e) we update x by a Gibbs move, sampling £~! from its full condi-

tional: .
- Bl (i —9)?
1 — Z A R Y
K| Ga<q+2,r+2; p :

Before considering the updating of p in (f), we comment briefly on the
issue of labeling the regimes. The whole model is, in fact, invariant to the
permutation of the labels ¢ = 1,2,..., k. For identifiability, Richardson and
Green (1997) adopt a unique labeling in which the p; are in increasing nu-
merical order. As a consequence the joint prior distribution of the p; is £!
times the product of the individual normal densities, restricted to the set
< pg < ... < pg. The p; can be updated by means of Gibbs sampler,
drawing them independently from the distribution

ILL.|... NN K/Zt;st:iyt—i_é 0-22%
1 L+wng 1460

In order to preserve the ordering constraints on the u;, the move is accepted
provided the ordering is unchanged and rejected otherwise.

3.2 Reversible jump move

Updating the value of k£ implies a change of dimensionality for the compo-
nents p and o, and the transition probability matrix A. We follow the
approach used by Richardson and Green (1997) consisting in a random
choice between splitting an existing regime into two, and merging two ex-
isting regimes into one. The probabilities of these alternatives are b and
d = 1—0bg, respectively, when there are currently k regimes. Of course d; =0
and bgx = 0. Otherwise we choose by = dp, = 0.5, for k=2,3,..., K — 1.

Suppose the current state of the MCMC algorithm is characterized by
k + 1 regimes and parameters which we will indicate with the superscript
“77_ For the combine proposal we randomly choose a pair of regimes, (i, 12),
adjacent in terms of the current value of their means, i.e. fi;, < fi;,, with no
other fi; in the interval [fi;,, fi;,]. These two regimes are merged into a new
one, labeled ¢*, reducing the number of regimes by 1. We then reallocate all
those observations y; with s, = 4; or §; = i5 to the new regime ¢* and create
values for p;«, 02 in such a way that:

Ty iy + Tig iy

Hix = = =
iy + Ty
S (2 =2 S~ (2 =2
2 2 . ﬂ-il (ILL21 + O—’il) + 7ri2 (ILLZQ + O—’ig)
Wiw + O = = = )
Ty +7Ti2



while remaining y;’s and 02’s are copied. Then, the transition probabilities
from and to the regimes involved in the move are set as

Aoy = Tis Airj + i A Vi £

Ty + Ty

/\ii* = 5\7;7;1 + 5\1‘7;2 VZ # i*.

Obviously, A\jjx = 1= i Aixj, while the remaining A;; are unchanged. The
stationary probability of the new regime ¢* is then obtained as m;» = 7;, + ;.
Notice that the new HMM, characterized by k regimes, and the old one,
characterized by k+ 1 regimes, both have the same first and second moments.

The split proposal starts by choosing a regime * at random. We will
indicate the parameters under the new state with k 4+ 1 regimes using the
superscript “~ 7. The regime ¢* is split into two new ones labeled 7; and
19, augmenting k by 1. Then we have to reallocate all those observations
y; with s; = ¢* between the two new regimes, and create values for 7;,, 7;,,
fiys fliy, 04y, 0, and the transition probabilities from and to the regimes
involved in the move. The aim is to split ¢* in such a way that the dynamics
of the Hidden Markov Chain are essentially preserved. We accomplish this
in the same manner proposed by Robert et al. (2000). We generate vectors
wo ~ Be(2,2), w; ~ wF+(w¥ —wf)Be(1, 1), u; ~ Be(a, e), for each j # iy, is,
and v; ~ Be(a,e), for each i # iy,is, with shape parameters a, e and lower
and upper bounds wf, wY given below. The stationary probabilities of the
new regimes i; and iy are obtained as 7; = wom« and T, = (1 — wo)m,
respectively, while the transition probabilities are given by

\ u 3 1 - u . . .
Aiyj = w—]o%*j» Nigj = 7 wjo Aixj Vi # 1,42
S\m = Vi Njix, 5\7;7;2 = (1 - Ui))\ii*7 Vi 7’é i1, 12
>\i1i2 = w1 (1 - ; w_i)/\i*j>

JFU*

S\igil = [(1 — wl) ZUj/\i*j + WoW1 — Z’}@Uz)\”*] /(1 — U)()),

Ji* ii*

where Yi = 7Ti/7Ti*> while )\ilil and )\igig
shape parameters a and e are taken as

are set to make rows sum to 1. The

1-— 1+c2 1— 1

a = w0(2+c)’ e:a—wo if wy < =,
c wWo 2

1—(1- 14 c? 1

e = (1 = wo)( +C), a=e—20 if wy > —,
2 1—U}o 2



This produces a beta distribution with mean wy, if wy < 1/2, and squared
coefficient of variation ¢?; if wy > 1/2, the distribution is a mirror (around
x = 1/2) version of the distribution obtained for 1 — wy < 1/2. We used
¢ = 0.5. In order to guarantee that the new transition probability matrix is
stochastic, the upper and lower bound of w; are then computed as:

L {1 . 1— Zi#h,h )\zzlj}/z/wo ’ 0} ’

U)l = Imax
1- Zj?fiwé )\ilj

L=ty i Nii Vi wo — (1 = D itirin >\i21> (1 —wp)/wo
1- Zj?fiwé )\ilj

Notice that, if k = 1, then w’ = 0 and w{ = min {(1 — wp) /wo , 1}. Clearly,
it may happen that w! > wY¥, in this case there is no valid w; and the split
move is rejected.

In order to split y;« and o2, we need to generate a further two-dimensional

random vector z to specify the new parameters. We use Beta distributions
21 ~ 2YBe(1,1) and 29 ~ Be(1,1) for this and set

fliy = e — 2100\ Ty [ Ty fliy = fir + 2100\ Ti, [ Tig s

62-21 = 2(1 — zf)aiz*m*/fril, &?2 =(1—2)(1— zf)afmi*/ﬁiT

U . i — Jix—1 [ T4y Hix 1 — Hix [Ty
z{ =miny ——— [ — , —[— , 1
O % Tiq O % T4,

is the upper bound for z; in which the fi;’s are properly sorted. Notice that
2Y is equal to the minimum between the first and the third elements in the
brackets or to the minimum between the second and the third elements in
the brackets, respectively, when ¢* = k or +* = 1. Obviously, if £ = 1 then
2V =1.

Finally, we reallocate those ¥y, with s; = ¢* between 4; and 75 using the
restricted backward algorithm proposed by Robert et al. (2000). Obviously,
the s;’s different from ¢* are simply copied. Let us suppose that s; = i* for
t1 <t <ty with s, 1 # ¢* and s4,41 # ¢*. Then, 5;,,..., 5, are sampled one
at a time from t = t; to t = t5, with conditional probabilities given by

U

w; =min{ 1 — 1

Y

where

p(3 =) o< N,y s, 52)by (1) for i =y, iy (4)

where ‘- - - 7 denotes {y, §t1—17 5,51, RN §t+1 S [il, ig], cey §t2 S [’il, ig], §t2+17 5, /:l,, 5’},
and bt<l) = p<yt+1> < Ytas §t+1 € [Z.la i?]v SRR §t2 € [ila i?]: g152—1—1|§t = Z'7 A7 [1’
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for ¢ = iy,12. These elements can be obtained recursively as

btz (Z> = 5‘i,§tg+1 (5)

and, fort =1ty —1,..., 1,

b(i) = Z bt+1(j)5\ij¢(yt+1§/1j>5]2')-

J=t1,i2

If ¢, = 1, then thrhi on the right hand side of equation (4) is replaced by
the stationary probability 7; and, if o = T, the right end side of equation
(5) is replaced by 1.

According to the RJ framework, the acceptance probability for the split
move is min(1, A), where

_p(yld p,6)  pk+1)  p(Alk+1,8)  p(3|A)
A s me) ) (AR p(s/A)
I o L[ (s — 67 (i, —&)? (e —&)?
X (]{7 —+ 1) —27{% 5'1-15'1-2 exp {—% |: ) + ~5 - 2 :| }

o; g; 05
9~ \ —n—1
¢" 1 1 1 o} 0} ! dy11
= = — _ha i o« T
8 I'(n) exp | =6 7252 o2, 8 by P .

1 12 1
i ia i alloc

" 1 21 (22) g0 100) 1 wy — wk (1) (v:)
— — | g1.1(2 w | | a,e\Uj | | a,e\Vi
ZlUgl,l ZU 1,1\<2 92,2 0 UJU w{’ng wlU w% ; g s J 1. g s

1 1

where I'(-) is the Gamma function, Pyjj, is the probability of making the

allocation of the § that was made, g,. denotes the Be(a,e) density and J
is the Jacobian determinant of the transformation from the parameter vec-
tor (Nizx, Vi, Aixj, Ui, Wo, Wy, i, 21, 0, 22), With 4, 7 # i*, of the model with k
regimes to the parameter vector (S\iil, 5\,;7;2, 5\1»1]-, S\in, 5‘z‘1i27 5\2‘211 s iy s iy 6{12, 5{22
with ¢, j # 41,19, of the model with k + 1 regimes. Notice that diagonal ele-
ments of A or A are omitted since the row sums equal 1.

Table 1 shows the table of partial derivatives, which defines the Jacobian
matrix, with 0 and x denoting suitable sized vectors or matrices of zero and
non-zeros entries, respectively. Since the Jacobian matrix has an upper block
diagonal structure, we can evaluate J as the product of the three determi-

nants Ji, Jo and J3, corresponding to the three submatrices highlighted along
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Table 1: Table of partial derivatives

the main diagonal in Table 1. Thus

(A—wi)uj =5 % viXix 073 /0% %)
T—wg

5 = diag(v;) diag(1—v;) __ | I diag(1—v;) _ A
1 — diag(x;;+) —diag(h;;+) | 7 | 0 —diag(x;;«) | T Hi;ﬁi* iix
. 1w . B
dlag(il) diag(ﬂ) _col ¥1%i col
w T—wo wo
X, P w1 A x;
diag( = J) —diag( 1*1130) —col 1TOL*J>
J2 — R .
ujA g (1—uj)X;%; wi (1=K, = Xigin)
—Tow row =
( wg (1—wq)? wo
0 0 Niyip FRigin
1 1 0 0
_ 1—wqg . wq 2z wq 227 (1—wq)
"’*\/ wo Ul*\/lfwo 02, 22(1-2D)2 0% (1—22)(1-27)2
Js = | =0k Tmwg ok g wg (1—wgq)
w( 2 1-wg 29(1—2%) (1—29)(1—2%)
o o wo 1—w
or25(1=27) o2 (1—22)2(1—>7)

col(

wo(Xgpig +Rigiy)
1—wg

(I—w1)Ax
I—wq
witNigig
I—wq

wo (1—wq)
ox 23 (1—29)2(1—22)3

where the determinant J; is evaluated numerically in the same way discussed

in Robert et al. (2000).

4 Bayesian inference and forecasting

The RJ approach allows joint (or across-model) inferences about the number
of regimes and all the other parameters of the model. Given a burn-in period,
to guarantee the convergence of the chain to its stationary distribution, the
algorithm produces at each sweep a new realization of all the parameters
of the model, sampled from their joint posterior distribution. Let us denote
by (k™) AP s ) g) ) ¢™) forn =1,..., N, the sample obtained
after N sweeps of the algorithm. This sample provides the simulated joint
posterior distribution of all parameters and can be used to estimate all the

quantities of interest.
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4.1 Model choice and parameters estimation

From the RJ output, we can easily estimate the posterior distribution of the
number of regimes as the proportion of times each model was visited by the
algorithm, i.e.:

Pk = lly) = i I{k"™ = (}/N = N,/N,

n=1

where I{-} is the indicator function and N is the number of times the model
with ¢ components was visited by the algorithm.

Conditioning on a particular model (i.e. M,, the one with ¢ regimes) we
can estimate any other parameter of that particular model. Notice that, in
the following, we will drop the conditioning on the model in order to have
a short hand notation. We will explicitly include the conditioning in the
notation, only when required to avoid confusion.

For example, estimating the hidden states s is often the central question
in applied problems. All the Bayes estimates of s derive from its posterior
distribution p(s|y), a high-dimensional distribution that must be summarized
to be understood. In general it is sufficient to summarize it through its
marginal distributions p(s; = i|y), whose obvious estimates are

plsi=ily)= Y. I{s{” =i}/Ne.

n:k(m)=¢

More efficient estimates can be obtained through Rao-Blackwellization (Gelfand
and Smith, 1990; Casella and Robert, 1996) as:

Plsi=ily) = > plsi=ily, A™)/N,.

n:k(M=¢

This approach requires that the nonstochastic backward recursion also pro-
duces probabilities p(s; = iy, A), demanding little effort once the forward
recursion has been implemented. These probabilities can be, in fact, com-
puted as the appropriate margin of the matrix P, , = (Piy14;), where
Pri; = P(sio1 = 4,5 = jly,A). In practice, P; conditions on all of the
observed data, whereas P; conditions only on data observed up to time t.
Clearly, Py = P, hence P can be easily obtained from P, and P, using
Bayes’s rule,

p;,i,j = p(St—l = Z"St = jay7A)P(5t = j"!/,A)

k /
Zh:l Divi4n

k
= p(si—1 =1|s Zj,y1,~-->yt7A)Zp;+1,j,h = Dtij % .
h=1 Zhil pt,hvj
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Assigned a quadratic loss function, we can compute the point estimates
of any other parameter of the model as the mean of its simulated marginal
posterior distribution, conditional on the model with ¢ regimes. Point esti-
mates for the means and the variances of the ¢ regimes and the transition
matrix are given respectively by:

p= Y uN,  ot= Y N, A= ) A"N,

n:k(m) =¢ n:k(m) =¢ n:k(m) =¢

where the sums of vectors are taken element-wise.

4.2 Bayesian forecasting

Generally, when data indexed by time are analyzed, the main purpose is
to forecast the future values of the observed variable, given the information
available up to time 7. In a Bayesian context, inferences are based on the
posterior predictive density of these observations. Suppose we are interested
in forecasting the vector Y = (yri1,...,yric). Posterior predictive density
for this vector can be defined into two different ways, depending on what
we consider as “information available at time T”. If we believe that data
are generated by a specific model, let us say M, the information available
at time 7" will encompass the generating model and the observed data up to
time T'. Then, the posterior predictive density for Y will be defined as:

p(Y|y7M€) - / p(Y|y’0M47Mf>p(0Me|y7M€)d0Mz7 (6)

O,

where 6y, is the vector of all parameters (except k), including the state
variable, under the model with ¢ regimes and ©),, is the relative parameter
space.

Otherwise, if we are not certain about the true generating model within
a set of possible ones, we can take into account this uncertainty and define
the posterior predictive density of Y through model averaging as:

p(Yly) =D p(Y |y, My)p(Myly), (7)

where p(Y |y, M) is defined in (6). Notice that in (7), we are considering as
available information at time 7" only the observed data.

Regardless the definition considered for the posterior predictive density,
we cannot compute it analytically but we can easily simulate it as a by-
product of the MCMC algorithm. Let us consider the definition in (6), first.
We can draw values from p(Y |y, M;) through the following steps:
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1. conditioning on the model with ¢ regimes, i.e. for those sweeps n of the

MCMC algorithm in which k) = ¢, draw a vector (8¥L+)17 e 85526‘)
from p(sry1, ..., sr+c|y, A(n)>;

2. conditioning on ng)-g = 4, draw a value of y(Tngg from N(Nz('n), 01'2(”)), for
g=1,....G.

To perform step 1, notice that we can use the following decomposition:

G
p(sra1s - sy, A™) = plsrialy, A) [ [ p(srglsrg-1, y, A™).
g=2

Thus, we can draw s, from the probability distribution

k(n)

plsrar = jly, A™) = D p(srar = jlsr =iy, A )p(sp = iy, A™) =
i=1
k()

= Z Xijp(st = ily, A™),
=1

with p(sp = i|y, A"™) given in Section 3.1, and then we iteratively draw sp.,
(n)

ST4g—1,7" for

from the probability distribution p(sr4, = j|s¥ig_1, y, A = )
g=2,...,G.

Drawing from the posterior predictive distribution in (7) is simply per-
formed repeating steps 1 and 2 at each sweep of the algorithm, regardless

the model visited at that sweep.

5 Conclusions

HMDMs are a flexible class of models useful to represent dependent heteroge-
neous phenomena. In this paper we illustrated Bayesian inference for HMMs
with an unknown number of regimes. In our formulation, the data are in-
dependent realizations, conditional on the state variable, from a normal dis-
tribution with mean and variance depending on the value assumed by the
state variable. With this respect, we extended the approach of Robert et al.
(2000), which assume the data as independently generated by a zero mean
normal distribution, conditional on the state variable.

We considered a hierarchical model which allowed us to make vague a
priori assumptions on the parameters of the model. The analytically un-
tractable joint posterior distribution of all the parameters of the model,
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including the unknown number of regimes was simulated through MCMC
methods and, in particular, making use of the RJ algorithm which allows
for the changing dimension of the parameter space. The updating of the
unobserved state variable was illustrated in detail and performed through a
stochastic forward-backward recursion aimed at improving the mixing of the
chain, compared to the standard Gibbs sampling algorithm, and providing,
as a by-product, efficient estimates of the posterior marginal distribution of
the state variable itself.

We illustrated how to choose an appropriate model for the data and ob-
tain point estimates for its parameters on the basis of the MCMC output.
Finally, we showed how the posterior predictive density of future observa-
tions can be simulated with a little effort through the MCMC algorithm,
either conditioning the forecast on a particular model or averaging over dif-
ferent models, to take into account the uncertainty about the true number
of regimes.
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