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1 Introduction

The global attractors play a very important role in the qualitative study of
difference equations (both autonomous and non-autonomous). The present
work is dedicated to the study of global attractors of quasi-linear non-autonomous
difference equations

un+1 = A(σnω)uk + F (uk, σ
nω), (1)

where Ω is a metric space (generally speaking non-compact), (Ω,Z+, σ) is
a dynamical system with discrete time Z+, A ∈ C(Ω, [E]) and the function
F ∈ C(E×Ω, E) satisfies to ”the condition of smallness”. Analogous problem
has been studied in Cheban D. and Mammana C. [5] when the space Ω is
compact.

The obtained results are applied to the study of a class of triangular maps
T = (T1, T2) describing an economic growth model in capital accumulation
and population growth rate as recently proposed by Brianzoni S., Mammana
C. and Michetti E. [1]. 1

2 Triangular maps and non-autonomous dy-

namical systems

Let W and Ω be two complete metric spaces and denote by X := W × Ω
its Cartesian product. Recall that a continuous map F : X → X is called
triangular if there are two continuous maps f : W × Ω → W and g : Ω → Ω
such that F = (f, g), i.e. F (x) = F (u, ω) = (f(u, ω), g(ω)) for all x =:
(u, ω) ∈ X.

Consider a system of difference equations

{
un+1 = f(un, ωn)
ωn+1 = g(ωn),

(2)

for all n ∈ Z+, where Z+ is the set of all non-negative integer numbers.
Along with system (2) we consider the family of equations

un+1 = f(un, g
nω) (ω ∈ Ω), (3)

1The authors consider the neoclassical one–sector growth model with differential savings
as in Bohm V. and Kaas L. [3], while assuming CES production function and the labour
force dynamic described by the Beverton–Holt equation (see [2]), that has been largely
studied in [6] and [7].
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which is equivalent to system (2). Let ϕ(n, u, ω) be a solution of equation
(3) passing through the point u ∈ W for n = 0. It is easy to verify that the
map ϕ : Z+ ×W × Ω → W ((n, u, ω) 7→ ϕ(n, u, ω) ) satisfies the following
conditions:

(i) ϕ(0, u, ω) = u for all u ∈ W and ω ∈ Ω;

(ii) ϕ(n + m,u, ω) = ϕ(n, ϕ(m,u, ω), σ(m,ω)) for all n, m ∈ Z+, u ∈ W
and ω ∈ Ω, where σ(n, ω) := gnω;

(iii) the map ϕ : Z+ ×W × Ω → W is continuous.

Denote by (Ω,Z+, σ) the semi-group dynamical system generated by pos-
itive powers of map g : Ω → Ω, i.e. σ(n, ω) := gnω for all n ∈ Z+ and
ω ∈ Ω.

Recall [4, 8] that a triple 〈W,ϕ, (Ω,Z+, σ)〉 (or briefly ϕ) is called a cocycle
over the dynamical system (Ω,Z+, σ) with fiber W if the mapping ϕ : Z+ ×
W × Ω → Ω possesses the properties (i)-(iii).

Let X := W and (X,Z+, π) be a dynamical system on X, where π(n, (u, ω)) :=
(ϕ(n, u, ω), σ(n, ω)) for all u ∈ W and ω ∈ Ω, then (X,Z+, π) is called [8] a
skew-product dynamical system, generated by the cocycle 〈W,ϕ, (Ω,Z+, σ)〉.

Taking into consideration this fact we can study triangular maps in the
framework of cocycles with discrete time.

3 Global attractors of dynamical systems

Let M be some family of subsets from X and T = Z+ or Z.
Dynamical system (X,T, π) is said to be M-dissipative if for every ε > 0

and M ∈ M there exists L(ε,M) > 0 such that πtM ⊆ B(K, ε) for any
t ≥ L(ε,M), where K is a certain fixed subset from X depending only on
M. In this case K we will call the attractor for M.

For the applications the most important ones are the cases when K is
bounded or compact and M := {{x} | x ∈ X} or M := C(X), or M :=
{B(x, δx) | x ∈ X, δx > 0}, or M := B(X).

A dynamical system (X,T, π) is called:

− point dissipative if there exists K ⊆ X such that for every x ∈ X

lim
t→+∞

ρ(xt,K) = 0; (4)

− compact dissipative if the equality (4) takes place uniformly w.r.t. x
on the compact subsets from X.
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We denote by

J := Ω(K) =
⋂
t≥0

⋃
τ≥t

πτK,

then the set J does not depend of the choice of the attractor K and is
characterized by the properties of the dynamical system (X,T, π) . The set
J is called a Levinson center of the dynamical system (X,T, π).

Theorem 3.1. [4] Let (X,T, π) be point dissipative. For (X,T, π) to be
compact dissipative it is necessary and sufficient that Σ+(K) be relatively
compact for any compact K ⊆ X.

Let E be a finite-dimensional Banach space and 〈E, ϕ, (Ω,Z+, σ)〉 be a
cocycle over (Ω,Z+, σ) with the fiber E (or shortly ϕ).

A cocycle ϕ is called:

- dissipative, if there exists a number r > 0 such that

lim sup
t→+∞

|ϕ(t, u, ω)| ≤ r (5)

for all ω ∈ Ω and u ∈ E;

- uniform dissipative, if there exists a number r > 0 such that

lim sup
t→+∞

sup
ω∈Ω

′
,|u|≤R

|ϕ(t, u, ω)| ≤ r

for all compact subset Ω
′ ⊆ Ω and R > 0.

Let (X,T, π) be a dynamical system and x ∈ X. Denote by ωx :=
∩t≥0∪τ≥tπ(τ, x) the ω-limit set of point x.

Theorem 3.2. The following statements hold:

(i) if the dynamical system (Ω,Z+, σ) and the cocycle ϕ are point dis-
sipative, then the skew-product dynamical system (X,Z+, π) is point
dissipative;

(ii) if the dynamical system (Ω,Z+, σ) is compact dissipative and the cocy-
cle ϕ is uniform dissipative, then the skew-product dynamical system
(X,Z+, π) is compact dissipative.
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Proof. Let x := (u, ω) ∈ X := E ×Ω, then under the conditions of Theorem
the set Σx := {π(t, x) : t ∈ Z+} is relatively compact and ωx ⊆ B[0, r] ×
K, where B[0, r] := {u ∈ E : |u| ≤ r}, r is a number figuring in the
inequality (5) and K is a compact appearing in (4). Thus the dynamical
system (X,Z+, π) is point dissipative.

According to first statement of Theorem the skew-product dynamical sys-
tem (X, Z+, π) is point dissipative. Let M be an arbitrary compact subset
from X := E × Ω, then there are R > 0 and a compact subset Ω

′ ⊆ Ω such
that M ⊆ B[0, R]×Ω

′
. Note that Σ+

M := {π(t, M) : t ∈ Z+} ⊆ Σ+

B[0,R]×Ω
′ :=

{(ϕ(t, u, ω), σ(t, ω)) : t ∈ Z+, u ∈ B[0, R], ω ∈ Ω
′}. We will show that the

set Σ+
M is relatively compact. In fact, let {xk} ⊆ Σ+

M , then there are {uk} ⊆
B[0, R], {ωk} ⊆ Ω

′
and {tk} ⊆ Z+ such that xk = (ϕ(tk, uk, ωk), σ(tk, ωk)).

By compact dissipativity of dynamical system (Ω,Z+, σ) and uniform dis-
sipativity of the cocycle ϕ the sequences {ϕ(tk, uk, ωk)} and σ(tk, ωk)) are
relatively compact and, consequently, the sequence {xk} is so. Now to finish
the proof it is sufficient to refer to Theorem 3.1.

4 Global attractors of quasi-linear triangular

systems

Consider a difference equation

un+1 = f(un, σnω) (ω ∈ Ω). (6)

Denote by ϕ(n, u, ω) a unique solution of equation (6) with the initial con-
dition ϕ(0, u, ω) = u.

Equation (6) is said to be dissipative (respectively, uniform dissipative),
if there exists a positive number r such that

lim sup
n→+∞

|ϕ(n, u, ω)| ≤ r (respectively, lim sup
n→+∞

sup
ω∈Ω

′
,|u|≤R

|ϕ(n, u, ω)| ≤ r)

for all u ∈ E and ω ∈ Ω (respectively, for all R > 0 and Ω
′ ∈ C(Ω)).

Consider a quasi-linear equation

un+1 = A(σnω)uk + F (uk, σ
nω), (7)

where A ∈ C(Ω, [E]) and the function F ∈ C(E ×Ω, E) satisfies ”the condi-
tion of smallness”.

Denote by U(k, ω) the Cauchy matrix for the linear equation

un+1 = A(σnω)uk.
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Theorem 4.1. Suppose that the following conditions hold:

(i) there are positive numbers N and q < 1 such that

‖U(n, ω)‖ ≤ Nqn (n ∈ Z+); (8)

(ii) |F (u, ω)| ≤ C + D|u| (C ≥ 0, 0 ≤ D < (1− q)N−1) for all u ∈ E and
ω ∈ Ω.

Then equation (7) is uniform dissipative and

|ϕ(n, u, ω)| ≤ (q + DN)n−1qN |u|+ CN

q − 1
(qn−1 − 1). (9)

Proof. This statement cab be proved using the same type of arguments as in
the proof of Theorem 5.2 from [5] and we omit the details.

Let 〈E, ϕ, (Ω,Z+, σ)〉 be a cocycle over (Ω,Z+, σ) with the fiber E.

Theorem 4.2. Let (Ω,Z+, σ) be a compact dissipative dynamical system and
ϕ be a cocycle generated by equation (7). Under the conditions of Theorem
4.1 the skew-product dynamical system (X,Z+, π), generates by cocycle ϕ
admits a compact global attractor.

Proof. This statement follows directly from Theorems 4.1 and 3.2.

Theorem 4.3. Let A ∈ C(Ω, [E]) and F ∈ C(E × Ω, E) and the following
conditions be fulfilled:

(i) the dynamical system (Ω,Z+, σ) is compact dissipative and JΩ its Levin-
son center;

(ii) there exist positive numbers N and q < 1 such that inequality (8) holds;

(iii) there exists C > 0 such that |F (0, ω)| ≤ C for all ω ∈ Ω;

(iv) |F (u1, ω)− F (u2, ω)| ≤ L|u1− u2| (0 ≤ L < N−1(1− q)) for all ω ∈ Ω
and u1, u2 ∈ E.

Then

(i) the equation (7) (the cocycle ϕ generated by this equation) admits a
compact global attarctor;

(ii) there are two positive constants N and ν < 1 such that

|ϕ(n, u1, ω)− ϕ(n, u2, ω)| ≤ N νn|u1 − u2| (10)

for all u1, u2 ∈ E and n ∈ Z+.

Proof. This statement can be proved by slight modification the proof of The-
orem 5.9 from [5] and we omit the details.
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5 Non-Autonomous Dynamical Systems with

Convergence

A cocycle ϕ over (Y,T2, σ) with the fiber W is called compactly dissipative
if the skew-product dynamical system (X,T1, π) associated by cocycle ϕ
(X := W × Y and π := (ϕ, σ)) is so.

〈(X,T1,π),(Y,T2,σ),h〉 is said to be convergent if the following conditions
are valid:

(i) the dynamical systems (X,T1, π) and (Y,T2, σ) are compactly dissipa-
tive;

(ii) the set JX

⋂
Xy contains at most one point for all y ∈ JY , where

Xy := h−1(y) := {x|x ∈ X, h(x) = y} and JX (respectively, JY ) is
the Levinson center of the dynamical system (X,T1, π) (respectively,
(Y,T2, σ)).

Theorem 5.1. [4, Ch.II] Let 〈(X,T1, π), (Y,T2, σ), h〉 be a non-autonomous
dynamical system and the following conditions be fulfilled:

(i) the dynamical system (Y,T2, σ) is compact dissipative and JY its Levin-
son center;

(ii) there exists a homomorphism γ from (Y,T2, σ) to (X,T1, π) such that
h ◦ γ = IdY ;

(iii) lim
t→+∞

ρ(π(t, x1), π(t, x2)) = 0 for all x1, x2 ∈ X (h(x1) = h(x2)).

Then

(i) the dynamical system (X,T1, π) is compactly dissipative and γ(JY ) =
JX ;

(ii) Jy consists a single point γ(y) for all y ∈ JY .

Theorem 5.2. Let A ∈ C(Ω, [E]) and F ∈ C(E × Ω, E) and the following
conditions be fulfilled:

(i) the dynamical system (Ω,Z, σ) is compact dissipative and JΩ its Levin-
son center;

(ii) there exist positive numbers N and q < 1 such that inequality (8) holds;

(iii) there exists C > 0 such that |F (0, ω)| ≤ C for all ω ∈ Ω;
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(iv) |F (u1, ω)− F (u2, ω)| ≤ L|u1− u2| (0 ≤ L < N−1(1− q)) for all ω ∈ Ω
and u1, u2 ∈ E.

Then

(i) the equation (7) (the cocycle ϕ generated by this equation) admits a
compact global attractor {Iω | ω ∈ JΩ} and Iω consists a single point
uω (i.e. Iω = {uω}) for all ω ∈ JΩ;

(ii) the mapping ω 7→ uω is continuous and ϕ(t, uω, ω) = uσ(t,ω) for all
ω ∈ JΩ and t ∈ Z;

(iii) there are two positive constants N and ν < 1 such that

|ϕ(n, u1, ω)− ϕ(n, u2, ω)| ≤ N νn|u1 − u2| (11)

for all u1, u2 ∈ E and n ∈ Z+;

(iv)
|ϕ(n, u, ω)− uσnω| ≤ N νn|u− uω| (12)

for all u ∈ E, ω ∈ JΩ and n ∈ Z+.

Proof. Let 〈E, ϕ, (Ω,Z, σ)〉 be the cocycle generated by equation (7) and
Cb(Ω, E) be the space of all continuous and bounded functions µ : Ω 7→ E
equipped with the sup-norm. For every n ∈ Z+ we define the mapping Sn :
Cb(Ω, E) 7→ Cb(Ω, E) by equality (Snµ)(ω) := ϕ(n, µ(σ(−n, ω)), σ(−n, ω))
for all ω ∈ Ω. It easy to verify that the family of mappings {Sn | n ∈ Z+}
forms a commutative semigroup. From the inequality (9) it follows that
Snµ ∈ Cb(Ω, E) for every µ ∈ Cb(Ω, E) and n ∈ Z+. On the other hand from
the inequality (10) we have

‖Snµ1 − Snµ2‖ ≤ N νn‖µ1 − µ2‖

for all µ1, µ2 ∈ Cb(Ω, E) and n ∈ Z+, where N := qN
q+LN

and ν := q +
LN. Under the conditions of Theorem ν = q + LN < q + 1 − q = 1 and,
consequently, the semi-group {Sn | n ∈ Z+} is contracting. Thus there exists
a unique fixed point µ ∈ Cb(Ω, E) of the semi-group {Sn | n ∈ Z+} and hence

µ(σ(n, ω)) = ϕ(n, µ(ω), ω)

for all n ∈ Z+ and ω ∈ Ω.
Let 〈(X,Z+, π), (Ω,Z, σ), h〉 be the non-autonomous dynamical system

associated by cocycle ϕ (i.e. X := E×Ω, π := (ϕ, σ) and h := pr2 : X 7→ Ω).
Under the conditions of Theorem by Theorem 4.3 we have ρ(x1t, x2t) ≤
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N e−νtρ(x1, x2) for all x1, x2 ∈ X (h(x1) = h(x2)). Since γ := (µ, IdΩ) is an
invariant section of the non-autonomous dynamical system 〈(X,Z+, π), (Ω,Z, σ), h〉,
then according to Theorem 5.1 the dynamical system (X,Z+, π) is compactly
dissipative, its Levinson center JX = γ(JΩ) and Jω := J∩Xω (Xω := h−1(ω))
consists a single point γ(ω), i.e. Jω = {γ(ω)} for all ω ∈ Ω. Taking into con-
sideration that the skew-product dynamical system (X,Z+, π) is compact
dissipative, Jω = Iω × ω and γ = (µ, IdΩ) we obtain Iω = µ(ω) for all
ω ∈ JΩ.

6 Economic Application

6.1 The model

Dynamic economic growth models have often considered the standard, one-
sector neoclassical Solow model (see Solow S. R. [9]). Bohm V. and Kaas
L. [3] considered the role of differential savings behavior between workers
and shareholders and its effects with regard to stability of stationary steady
states within the framework of the discrete-time Solow growth model. More
recently, Brianzoni S., Mammana C. and Michetti E. [1] proposed a discrete-
time version of the Solow growth model with differential savings as formalized
by Bohm V. and Kaas L. [3] while considering two different assumptions.
Firstly they assume the CES production function. Secondly they assume
the labor force growth rate not being constant, in particular they consider a
model for density dependent population growth described by the Beverton-
Holt equation (see [2]).

The resulting system (T,R2
+) describing capital accumulation k and pop-

ulation n dynamics of the model studied in Brianzoni S., Mammana C. and
Michetti E. [1], where T = (T1, T2), is given by

T1(k, n) =
(1− δ)k + (kρ + 1)

1−ρ
ρ (sw + srk

ρ)

1 + n

and

T2(n) =
rhn

h + (r − 1)n

for all (k, n) ∈ R2
+. In the model, δ ∈ (0, 1) is the depreciation rate of capital,

sw ∈ (0, 1) and sr ∈ (0, 1) are the constant saving rates for workers and
shareholders respectively,2 ρ ∈ (−∞, 1), ρ 6= 0 is a parameter related to the

2The authors also assume sw 6= sr since the standard growth model of Solow R. M. [9]
is obtained if the two savings propensities are equal.
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elasticity of substitution between the production factors given by 1/(1− ρ),
h > 0 is the carrying capacity (for example resource availability) and r >
1 is the inherent growth rate (such a rate is determined by life cycle and
demographic properties such as birth rates etc.). The Beverton-Holt T2 have
been studied extensively in Cushing J. M. and Henson S. M. [6, 7].

6.2 Invariant sets

Invariant sets of the mapping T : R2
+ → R2

+.

Lemma 6.1. The following sets are invariant for the mapping T :

(1) A1 = {(k, 0) : k ∈ R+}
(2) A2 = {(k, h) : k ∈ R+}
(3) A3 = {(k, n) : 0 < n < h, k ∈ R+}
(4) A4 = {(k, n) : n > h, k ∈ R+}

Proof. This statement follows from the fact that the system T is triangular
and the sets: B1 = {0, 0}, B2 = {0, h}, B3 = {(0, n)|0 < n < h} and
B4 = {(0, n)|h < n} are invariant with respect to one dimensional map
T2 : R+ → R+.

Remark 6.2. If ρ ∈ (−∞, 0), then

(i) T1(0, n) = 0 for all n ∈ R+;

(ii) T admits also the 5th invariant set A5 = {(0, n) : n ∈ R+}.

6.3 Existence of an attractor for ρ ∈ (−∞, 0).

Theorem 6.3. If ρ < 0, then the dynamical system (R2
+, T ) admits a compact

global attractor.

Proof. Assume ρ ∈ (−∞, 0) and let λ = −ρ, then λ ∈ (0, +∞). We write T1

in terms of λ

T1(k, n) =
1

1 + n

[
(1− δ)k + (k−λ + 1)

1+λ
−λ (sw + srk

−λ)
]

=

=
1

1 + n

[
(1− δ)k +

(
1 + kλ

kλ

)− 1+λ
λ

(
sr + swkλ

kλ

)]
=

9



=
1

1 + n

[
(1− δ)k +

(
kλ

1 + kλ

) 1+λ
λ

(
sr + swkλ

kλ

)]
=

=
1

1 + n

[
(1− δ)k +

k

(1 + kλ)
1+λ

λ

(sr + swkλ)

]
=

=
1

1 + n

[
(1− δ)k +

k

(1 + kλ)
1
λ

sr + swkλ

1 + kλ

]
. (13)

Note that k

(1+kλ)
1
λ
−→ 1 as k −→ +∞, sr+swkλ

1+kλ −→ sw as k −→ +∞ and,

consequently, there exists M > 0 such that
∣∣∣∣∣

k

(1 + kλ)
1
λ

sr + swkλ

1 + kλ

∣∣∣∣∣ ≤ M, (14)

for all k ∈ [0, +∞).
Since 0 ≤ 1

1+n
≤ 1 for all n ∈ R+, then from (13) and (14) we obtain

0 ≤ T1(k, n) ≤ αk + M (15)

for all n, k ∈ R+, where α := 1− δ > 0.
Since the map T is triangular, to prove this theorem it is sufficient to

apply Theorem 4.2. Theorem is proved.

Remark 6.4. 1. It is easy to see that the previous theorem is true also for
δ = 1 because in this case α = 1−δ = 0 and from (15) we have T1(k, n) ≤ M ,
∀k, n ∈ R+. Now it is sufficient to refer to Thoerem 3.2.

2. If δ = 0 the problem is open.

According to Theorem 6.3, it is possible to conclude that if the elasticity
of substitution between the two production factors (capital and labour) is
positive and lesser than one (that is ρ < 0), capital and population dynamics
cannot be explosive so economic patterns are bounded.

6.4 Existence of an attractor for ρ ∈ (0, 1) and sr < δ.

The dynamical system (X,T, π) we will call:

- locally completely continuous if for every point p ∈ X there exist δ =
δ(p) > 0 and l = l(p) > 0 such that πlB(p, δ) is relatively compact;

- weakly dissipative if there exist a nonempty compact K ⊆ X such
that for every ε > 0 and x ∈ X there is τ = τ(ε, x) > 0 for which
xτ ∈ B(K, ε). In this case we will call K weak attractor.
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Note that every dynamical system (X,T, π) defined on the locally com-
pact metric space X is locally completely continuous.

Theorem 6.5. [4] For the locally completely continuous dynamical systems
the weak, point and compact dissipativity are equivalent.

Theorem 6.6. If ρ ∈ (0, 1) and sr < δ, then the mapping T admits a
compact global attractor.

Proof. If ρ ∈ (0, 1) and k > 0 we have

T1(k, n) =
1

1 + n

[
(1− δ)k + (kρ + 1)

1−ρ
ρ (sw + srk

ρ)
]

=

=
1

1 + n

[
(1− δ)k +

(kρ + 1)
1
ρ

1 + kρ
(sw + srk

ρ)

]
=

=
1

1 + n
[(1− δ)k + srk + θ(k)k] (16)

where θ(k) := (kρ+1)
1
ρ

k(1+kρ)
(sw + srk

ρ)− sr → 0 as k → +∞. In fact (kρ+1)
1
ρ

k
→ 1

as k → +∞ while (sw+srkρ)
1+kρ → sr as k → +∞ and, consequently,

(kρ+1)
1
ρ

1+kρ (sw + srk
ρ)

srk
=

(kρ + 1)
1
ρ

k

(sw + srk
ρ)

sr(kρ + 1)
→ 1

as k → +∞, i.e. (kρ+1)
1
ρ

1+kρ (sw + srk
ρ) = srk + θ(k)k. From (16) we have

T1(k, n) =
1

1 + n
[(1− δ + sr)k + θ(k)k]

for all (k, n) ∈ R2
+ with k > 0.

Since sr < δ then α := 1− δ + sr < 1. Let R0 > 0 be a positive number
such that

|θ(k)| < 1− α

2
, (17)

for all k > R0. Note that for every (k0, n0) ∈ R2
+, with k0 > R0, the trajectory

{T t(k, n) | t ∈ Z+} starting from point (k0, n0) at the initial moment t = 0,
at least one time intersects the compact K0 := [0, h0] × [0, R0], (h0 > h).
In fact, if we suppose that this statement is false, then there exists a point
(k0, n0) ∈ R2

+ \K0 such that

(kt, nt) := T t(k0, n0) ∈ R2
+ \K0 (18)
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for all t ∈ Z+. Taking into consideration that nt → h (or 0) as t → +∞, we
obtain from (18) that kt > R0 for all t ≥ t0, where t0 is a sufficiently large
number from Z+. Without loss of generality, we may suppose that t0 = 0
(if t0 > 0 then we start from the initial point (nt0 , kt0) := T t0(n0, k0), where
T t0 := T ◦ T t0−1 for all t0 ≥ 2). Thus we have

kt > R0 (19)

for all t ≥ 0 and

kt+1 =
1

1 + n
[αkt + θ(kt)kt] (20)

From (17) and (20) we obtain

kt+1 ≤ αkt +
1− α

2
kt =

1 + α

2
kt (21)

since 1
1+n

≤ 1 for all t ≥ 0. From (21) we have

kt ≤
(

1 + α

2

)t

k0 → 0 as t → +∞, (22)

but (19) and (22) are contradictory. The obtained contradiction proves the
statement. Let now (k0, n0) ∈ R2

+ be an arbitrary point.

(a) If k0 < R0 and kt ≤ R0 for all t ∈ N, then lim sup
t→+∞

kt ≤ R0;

(b) If there exists t0 ∈ N such that kt0 > R0, then there exists τ0 ∈ N
(τ0 > t0) such that (kτ0 , nτ0) ∈ K0 (see the proof above).

Thus we proved that for all (k0, n0) ∈ R2
+ there exists τ0 ∈ N such that

(kτ0 , nτ0) ∈ K0. According to Theorem 6.5 the dynamic system (R2
+, T )

admits a compact global attractor. The theorem is proved.

6.5 Structure of the attractor

A fixed point p ∈ X of dynamical system (X,T, π) is called

- Lyapunov stable if for arbitrary positive number ε > 0 there exists
δ = δ(ε) > 0 such that ρ(x, p) < δ implies ρ(π(t, x), p) < ε for all t ≥ 0;

- attracting if there exists δ0 > 0 such that lim
t→+∞

ρ(π(t, x), p) = 0 for all

x ∈ B(p, δ0) := {x ∈ X | ρ(x, p) < δ0};
- asymptotically stable if it is Lyapunov stable and attracting.
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Theorem 6.7. Suppose that ρ < 0 and one of the following conditions hold:

(i) sw < min{δ, sr} and 0 < λ < λ0, where λ0 is a positive root of the
quadratic equation (sr − sw)λ2 + (sr − 2δ)λ− δ = 0;

(ii) sr < sw < δ.

Then

(i) the dynamic system (R2
+, T ) admits a compact global attractor J =

{(0, n) | 0 ≤ n ≤ h};
(ii) for all point x := (k, n) ∈ R2

+ with n > 0 the ω-limit set ωx of x consists
a single fixed point (0, h) of dynamical system (R2

+, T );

(iii) the fixed point (0, h) is asymptotically stable.

Proof. Assume ρ ∈ (−∞, 0) and let λ = −ρ, then λ ∈ (0, +∞). We write T1

in terms of λ (see the proof of Theorem 6.6)

T1(k, n) =
1

1 + n

[
(1− δ)k +

k

(1 + kλ)
1
λ

sw + srk
λ

1 + kλ

]
.

Denote by

f(k) :=
k

(1 + kλ)
1
λ

sw + srk
λ

1 + kλ
,

then

f ′(k) =
sw + (−swλ + (λ + 1)sr)k

λ

(1 + kλ)2+1/λ
.

It easy to verify that under the conditions of Theorem f ′(k) < sw for all
k ≥ 0. Consider the non-autonomous difference equation

kt+1 = A(σ(t, n))kt + F (kt, σ(t, n)) (23)

corresponding to triangular map T = (T1, T2), where A(n) := 1
n+1

, F (k, n) :=
1

n+1
f(k) and σ(t, n) := T t

2(n) for all t ∈ Z+ and n ∈ R+. Under the condi-
tions of Theorem we can apply Theorem 5.2. By this Theorem the dy-
namical system (R2

+, T ) is compact dissipative with Levinson center J and
there exists a unique continuous bounded function µ : R+ 7→ R+ such that
J = {(µ(n), n) | n ∈ [0, h]}. Since F (n, 0) = 0 for all n ∈ R+, then it easy to
see that µ(n) = 0 for all n ∈ R+.

Let x = (k, n) ∈ R2
+ and n > 0. Since the dynamical system (R2

+, T ) is
compactly dissipative and its Levinson center J = ∪{Jn | 0 ≤ n ≤ h}, then

13



ωx ⊆ J. Let x̃ = (k̃, ñ) ∈ ωx, then there exists tm → +∞ (tm ∈ Z+) such
that T tm(k, n) → (k̃, ñ). It is evident that k̃ = 0. Since lim

t→+∞
T t

2n = h for all

n > 0 we obtain ñ = h, i.e. x̃ = (0, h).
Now we will prove that the fixed point (0, h) is stable. If we suppose

that it is not true, then there are ε0 > 0, δl → 0, xl := (kl, nl) → (0, h) and
tl → +∞ (as l → +∞) such that ρ(xl, (0, h)) < δl and

ρ(T tlxl, (0, h)) ≥ ε0, (24)

where ρ(·, ·) is the distance in R2
+. Since T tlxl = (ϕ(tl, kl, nl), T

tl
2 nl), where

ϕ(t, k, n) is the solution of equation (23) with initial condition ϕ(0, k, n) = k,
and nl → h by asymptotic stability of fixed point h ∈ R+ of dynamical
system (R+, T2) we have T tl

2 nl → h as l → +∞. On the other hand by
Theorem 5.2 we obtain

|ϕ(tl, kl, nl)− µ(T tl
2 )| ≤ N νtl|kl − µ(nl)| = N νtl|kl| → 0 (25)

because 0 < ν < 1, |kl| → 0 and tl → +∞. Taking into account that
µ(n) = 0 for all n ≥ 0 we obtain µ(T tl

2 ) = 0 for all l ∈ N and, consequently,
|ϕ(tl, kl, nl)| → 0 as l → +∞, i.e.

ρ(T tlxl, (0, h)) → 0 (26)

as l → +∞. The relations (24) and (26) are contradictory. The obtained
contradiction proves our statement.

When considering Theorem 6.7 it is possible to conclude that if sharehold-
ers save less than workers and the depreciation rate of capital is big enough
or, if workers save less than shareholders and the elasticity of substituion be-
tween the two factors is close to zero, then the economic system will converge
to the steady state (0, h) that is characterized by no capital accumulation.

Let γ be a full trajectory of dynamical system (X,T, π). Denote by
ωγ = ∩t≥0∪τ≥tγ(τ) (respectively, αγ = ∩t≤0∪τ≤tγ(τ)).

Theorem 6.8. Let ρ ∈ (0, 1), sr < δ and J be the Levinson center of dy-
namical system (R2

+, T ). Then following statements hold:

(i) J is connected;

(ii) J = ∪{Jn | 0 ≤ n ≤ h}, where Jn := In × {n} and In := [an, bn]
(an, bn ∈ R+);

(iii) dynamical systems (R+, T0) and (R+, Th) are compactly dissipative, where
T0(k) := T (k, 0) and Th(k) := T (k, h) for all k ∈ R+;

14



(iv) J0 = [a0, b0] × {0} (respectively, Jh := [ah, bh] × {h}) is the Levinson
center of dynamical system (R+, T0) (respectively, (R+, Th));

(v) there exists at least one fixed point p0 ∈ J0 (respectively, ph ∈ Jh) of
the dynamical system (R+, T0) (respectively, (R+, Th));

(vi) for all point x0 := (k0, n0) ∈ J (with 0 < n0 < h) and γ ∈ Φx0 we have
ωγ ⊆ Jh and αγ ⊆ J0.

Proof. Let ρ ∈ (0, 1) and sr < δ, then by Theorem 6.6 the dynmaical system
(R2

+, T ) is compactly dissipative. Denote by J the Levinson center of (R2
+, T ),

then by Theorem 1.33 [4] the set J is connected. Note that J = ∪{Jn | 0 ≤
n ≤ h}, where Jn = In × {n} and In is a compact subset of R+. According
to Theorem 2.25 [4] the set In is connected and, consequently, there are
an, bn ∈ R+ such that In = [an, bn].

Since the set R+ × {0} (respectively, R+ × {h}) is invariant with respect
to dynamical system (R2

+, T ), then on the set R+ × {0} (respectively, on
R+×{h}) is defined a compactly dissipative dynamical system (R+, T0) (re-
spectively, (R+, Th)) and the set J0 (respectively, Jh) is its Levinson center.
Taking into account that T0 (respectively, Th) is a continuous mapping of
J0 = [a0, b0] × {0} (respectively, Jh = [ah, bh] × {h}) on itself, then there
exists at least one fixed point p0 ∈ J0 (respectively, ph ∈ Jh) of dynamical
system (R+, T0) (respectively, (R+, Th)).

Let x0 := (k0, n0) ∈ J (with 0 < n0 < h), γ ∈ Φx0 and x = (k, n) ∈ ωγ

(respectively, x ∈ αγ). Then there exists a sequence {tm} ⊆ Z such that
tm → +∞ (respectively, tm → −∞) such that γ(tm) → x as m → +∞. Since
x0 = (k0, n0), 0 < n0 < h and pr2(γ(tm)) = T tm

2 (n0), then {T tm
1 (n0)} → h

(respectively, {T tm
2 (n0)} → 0) as m → +∞. On the other hand x ∈ J and,

consequently, p2(x) = h (respectively, pr2(x) = 0). Analogously we can prove
that ωx0 ⊆ Jh for all x0 = (k0, n0) ∈ R2

+ with n0 > 0, where ωx0 is the ω-limit
set of point x0.
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