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Abstract

In this work we prove chaotic properties for a class of unidimensional continuous family
map presenting a unique turning point and having some properties when increasing the
parameter value. This set (F–function) is not conjugate to the tent map, furthermore it is
not stretchable so we cannot use the well-known results about complex dynamics for these
functions. However, we prove that the F–function set is chaotic in the Li–Yorke sense
for a given value of the parameter onwards. We also apply the results obtained to the
study of the dynamics exhibited by the economic model describing a small open economy
subject to credit constraint due to moral hazard problems presented in [3]. A key role is
played by the degree of financial development achieved by the economy, in fact we prove
that complex behaviour can be exhibited at high level of financial development.
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1 Introduction

Li and Yorke overshoot conditions (see [6]) give analytical conditions to con-
clude that a map has chaotic properties, that is it is chaotic in the Li–Yorke
sense. In [4], Proposition 7.4, it is shown how Li–Yorke conditions hold for
a class of stretchable maps.

In this work we study a class of non-stretchable continuous unimodal
family maps on the interval depending on a parameter and we prove that
this system has chaotic properties in the Li–Yorke sense for sufficiently high
values of the parameter.

Notice that this type of chaotic behavior does not exclude that the observ-
able motion is indeed regular since the Li–Yorke Theorem (see [6]) implies
the existence of a Scrambled set of initial points with aperiodic orbits and
sensitively dependence on initial condition. However, it does not say any-
thing on the size of this set (about the properties of the Li–Yorke chaos see,
for instance, [4, 7]).

The results obtained are applied while studying an economic model de-
scribing a small open economy facing moral hazard problems of the kind
proposed in [3]. We prove that economies at high level of financial develop-
ment may exhibit fluctuations and complex behaviour as also discussed in
[3] where, only using numerical simulations, it has been argued that there is
not a level of financial development above which stability holds in the long
run.

The paper is organized as follows. In Section 2 we review some basic
notions and results useful for the analysis; we also define the class of the
F–function whose chaotic properties are proved in this paper. In Section 3
we prove that the F–function set is chaotic in Li–Yorke sense from a given
value of the parameter on. Finally we present the economic model in Section
4.

2 Preliminaries

Let M ⊆ R be a parameter space and define the one-parameter unidimen-
sional family system (fµ, I) by fµ(x) ≡ f(x, µ) where f(x, µ) is a continuous
real function defined on I = [0, 1] and dependent on the parameter µ ∈ M .

Now we consider fµ(x) as defined above and we give the following defini-
tions.

Definition 2.1. Recall [8] that a point cµ ∈ (0, 1) is a turning point of fµ(x)
if there exists an open neighborhood U of cµ such that the map fµ(x) is strictly
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increasing on one component of U \ {cµ} and strictly decreasing on the other
one, ∀µ ∈ M .

Definition 2.2. We say that map fµ(x) is unimodal in I if it has a unique
turning point, ∀µ ∈ M .

Definition 2.3. The set I is fµ–invariant if fµ(I) = I, ∀µ ∈ M .

Now we define the following F -function set.

Definition 2.4. Let F be the set of unimodal continuous functions fµ(x) :
I → I, having the following properties.

(i) I is fµ–invariant;

(ii) fµ(x) is decreasing on Il = [0, cµ) and strictly increasing on Ir = (cµ, 1],
∀µ ∈ M ;

(iii) lim
µ→sup M

cµ = 0 and inf
µ∈M

{fµ(1)} = k > 0;

(iv) fµ(x) < x, ∀x ∈ Ir.

Notice that the properties we placed on the class of the F–functions are
not so strict.

Firstly, although we are studying functions fµ(x) invariant on the in-
terval [0, 1], property (i), similarly we can also consider the larger class of
invariant functions on a given closed set D ⊂ R+ because the two maps are
topologically conjugate so they exhibit the same dynamic behavior.

Secondly, with property (ii) we are considering an unimodal function
having a minimum, however our considerations also hold for unimodal maps
having a maximum and defined on D ⊂ R−.

Furthermore, in order to study the dynamic properties of the F–function
class, a previous consideration is that we cannot use the well–known re-
sults about chaos properties of tent map (see [9], chapter 2) nor those about
stretchable maps (see [4]). In fact the F–function set is not topologically
conjugate to the tent map because of fµ(1) 6= 1, property (iv), and it is not
stretchable because we are not assuming fµ(x) ≡ µf1(x) while we are placing
property (iii).

3 Chaotic properties of the F -function set.

Theorem 3.1. Let fµ(x) be an F–function. Then there exists a value of µ,
say µM , such that fµ(x) has chaos properties for all µ ≥ µM .
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We proceed to prove Theorem 3.1 in several steps formulated in a series
of propositions.

Proposition 3.2. Let fµ(x) be an F–function. Then

(a) fµ(cµ) = 0 and fµ(0) = 1, ∀µ ∈ M ;

(b) fµ(x) has a unique positive fixed point x?
µ such that x?

µ ∈ (0, cµ);

(c) lim
µ→sup M

x?
µ = 0.

Proof. (a) Set I fµ–invariant implies that fµ(I) = I so it must be fµ(cµ) =
0 because cµ is the unique minimum point of fµ(x). Furthermore it must
be fµ(0) = 1 because fµ(x) < x, ∀x ∈ (cµ, 1] and fµ(x) is decreasing on
Il = [0, cµ).

(b) Let Φµ(x) = fµ(x) − x. Then Φµ(0) = 1 > 0 while Φµ(cµ) = −cµ <
0, ∀µ ∈ M (see part (a)) so fµ(x) has at least one fixed point x?

µ such
that x?

µ ∈ (0, cµ). This point must be unique because fµ(x) is decreasing
on [0, cµ). Finally fµ(x) has no other fixed point in (cµ, 1] because
fµ(x) < x, ∀x ∈ (cµ, 1].

(c) Consider that cµ > 0 and lim
µ→sup M

cµ = 0. Furthermore x?
µ is also

positive and x?
µ < cµ as proved in part (b), so it must be lim

µ→sup M
x?

µ = 0.

We now consider the following result.

Proposition 3.3. Let fµ(x) be an F–function. Then one of the following
statements is true ∀µ ∈ M :

(a) 0 < fµ(1) < x?
µ < cµ or

(b) 0 < x?
µ ≤ fµ(1) < cµ or

(c) 0 < x?
µ < cµ ≤ fµ(1).

Furthermore it does exist a value of µ, say µM , such that statement (c) is
true ∀µ ≥ µM .

Proof. As we proved in Proposition 3.2, 0 < x?
µ < cµ and also fµ(1) > 0

because fµ(cµ) = 0 and fµ(x) is strictly increasing on Ir. Then one of the
three statements must hold. Furthermore lim

µ→sup M
x?

µ = lim
µ→sup M

cµ = 0, as

we proved in Proposition 3.2, while inf
µ∈M

{fµ(1)} = k > 0 so it must exist a

µM ∈ M such that statement (c) is true ∀µ ≥ µM .
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Proposition 3.4. Let fµ(x) be an F–function and let µ ≥ µM . Then it
does exist at least one pre-image of cµ, say c−1

µ with fµ(c−1
µ ) = cµ, such that

c−1
µ ∈ (cµ, 1].

Proof. Suppose µ ≥ µM , then 0 < x?
µ < cµ ≤ fµ(1) (see Proposition 3.3).

Define Ψµ(x) = fµ(x)− cµ then Ψµ(cµ) = 0− cµ < 0 while Ψµ(1) = fµ(1)−
cµ ≥ 0, ∀µ ≥ µM . If Ψµ(1) = 0 then fµ(1) = cµ so c−1

µ = 1 and the existence
is proved, otherwise, if Ψµ(1) > 0 then it does exist at least one c−1

µ ∈ (cµ, 1)
such that Ψµ(c−1

µ ) = 0 that is fµ(c−1
µ ) = cµ.

Recall [6], let (f, I) a closed continuous system and suppose there exists
a point a ∈ I such that f 3(a) ≥ a > f(a) > f 2(a) then there exists a cycle of
every order n = 1, 2, 3, ... in I (see also [4], chapter 5) and, furthermore, (f, I)
has chaos properties (see [4], chapter 7). A point a satisfying the previous
inequality (label Li–Yorke overshoot condition) is called a Li–Yorke point.

Proposition 3.5. Let fµ(x) be an F–function and let µ ≥ µM . Then the
point c−1

µ is a Li–Yorke point.

Proof. Let c−1
µ be the point we found out in Proposition 3.4. By computing

a finite history of c−1
µ we have that fµ(c−1

µ ) = cµ, f 2
µ(c−1

µ ) = fµ(cµ) = 0 and,
finally, f 3

µ(c−1
µ ) = fµ(0) = 1. Furthermore f 3

µ(c−1
µ ) ≥ c−1

µ > fµ(c−1
µ ) > f 2

µ(c−1
µ )

so the Li–Yorke overshoot condition is verified and c−1
µ is a Li–Yorke point.

Notice that if µ = µM then c−1
µ = 1 and the map has a cycle–3.

Since fµ(x) has a Li–Yorke point ∀µ ≥ µM , then we can conclude that
fµ(x) has chaos properties ∀µ ≥ µM and Theorem 3.1 is proved.

4 Chaos in a credit constrained open econ-

omy

In this Section we use the results previously proven to demonstrate the
chaotic properties of an F–function describing a small, open economy that is
subject to credit constraint due to moral hazard problems, where a key role
is played by the degree of financial development achieved. This model repre-
sents a reviewed version of the one considered in [1] by using a Cobb-Douglas
technology. We briefly describe such a model; for further details about its
construction see [3].

Consider a small open economy with an exchange good produced by a
capital (K) and a country–specific input (like land, real estate or a non-
tradeable natural resource), whose supply (Z) is constant and whose price
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(p) is expressed in terms of units of tradeable good. The tradeable good can
be consumed or accumulated as productive capital for the production in the
next period.

Entrepreneurs are fund–takers who invest in production or in the interna-
tional capital market, while consumers lend a fixed portion, (1− α) of their
wealth to the entrepreneurs or invest in the international capital market at
an international equilibrium interest rate (r).

Considering a Cobb–Douglas technology, the output produced at time t
is given by y = AKρz1−ρ, ρ ∈ (0, 1), where z is the amount of the country-
specific input used in period t, while A > r is the total productivity factor.
We assume that capital fully depreciates after one period.

The total investment I in period t is devoted to purchase both capital and
country specific input. For a given level of investment, the optimal demand
z arises from the maximization of the profit function subject to the budget
constraint I = K + pz. The first order condition of the previous problem

yields the following demand z =
(

1−ρ
p

)
I, therefore, the country specific

input equilibrium price is obtained by equating the country specific input
equilibrium demand with its constant supply Z. Finally, we may write the
total equilibrium output y in terms of the level of investment I and the price

p, y = G(p)I, with G(p) = Aρρ(1−ρ)1−ρ

p1−ρ . Note that G(p) can be viewed as the
gross return of a unit of investment.

Within the model, a key role is played by financial factors as a source of
instability due to the presence of moral–hazard imperfections in the credit
market such that an entrepreneur can borrow each time at best an amount
L that is proportionate to its wealth W in the early stage, that is L ≤
µW (this hypothesis is largely discussed in [2] where it is assumed that the
entrepreneur’s wealth serves as a collateral for the loan). Coefficient µ can be
considered as an indicator of the financial development level of the national
economy (about this relation see [5]). Therefore, with a credit constraint
being present, the maximum investment amount is I = (1 + µ)W .

At time t entrepreneurs borrow, invest and produce by bearing the costs
of the productive factor used; then they make profits and pay off their debt to
lenders at an interest rate r while agents use up and save, thus determining
the amount of wealth available to entrepreneurs in the following period. The
dynamical law of wealth evolution is therefore given by f(W ) = (1− α)(y−
rL).

Let us now consider the following two cases.

• If G(p) ≥ r the return of the productive investment is higher then
the one in the capital market, so entrepreneurs invest in production
the maximum amount they can borrow considering the credit con-
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straint, therefore I = (1 + µ)W . By replacing this relation with the
one determining the equilibrium price of Z with the maximized pro-
duction relation we obtain y = ξW ρ where ξ = Aρρ(1 + µ)ρZ1−ρ.
The dynamical equation of wealth will be therefore given by f l

µ(W ) =
(1−α)W ρ (ξ − rµW 1−ρ) that holds if G(p) ≥ r that is W ≤ Wm

µ where

Wm
µ =

(
A
r

) 1
1−ρ Z

1+µ
ρ

ρ
1−ρ .

• If G(p) < r entrepreneurs invest in production only as long as the
production investment return equals the one in the capital market,
that is y − rL = rW which, when replaced in the dynamical equation
of wealth, results in f r

µ(W ) = (1− α)rW that holds for W > Wm
µ .

The final model describing the time evolution of the borrowers’ wealth
status (W ∈ R+) is given by the following map:

fµ(W ) =

{
f l

µ(W ) = (1− α)W ρ (ξ − rµW 1−ρ) , 0 ≤ W < Wm
µ ;

f r
µ(W ) = (1− α)rW, W ≥ Wm

µ .
(1)

where Wm
µ =

(
A
r

) 1
1−ρ Z

1+µ
ρ

ρ
1−ρ and ξ = Aρρ(1 + µ)ρZ1−ρ.1

Here α ∈ (0, 1) is the consumption rate so (1−α) is the constant fraction
the consumers save of their own wealth; A > r is the total productivity
factor, where r > 1 is the constant equilibrium rate in the international
capital market; finally ρ ∈ (0, 1) is the marginal rate of substitution between
the productivity factors while Z ∈ R+ is the country specific production
factor which we assume to be constant. From economic considerations it is
also assumed that (1− α)r < 1.

Since the investment at each period is upper bound by (1 + µ)W , then
the proportional coefficient µ ≥ 0 can be understood as a credit multiplier
that reflects the level of the financial development in the domestic economy.
We are interested in studying the dynamics exhibited by (1) when varying
the parameter µ.

It is straightforward to see that system (1) is continuous.
First we prove the following Proposition.

Proposition 4.1. Let fµ(W ) given by (1) and let ρ
1

1−ρ < (1 − α)r. Then
there exists a value of µ, say µ̄ > 0, such that fµ(W ) is unimodal in the set
S =

[
fµ(Wm

µ ), f 2
µ(Wm

µ )
]
, ∀µ > µ̄, with Wm

µ being its unique turning–point.

Proof. In order to prove the previous Proposition 4.1, we proceed by showing
that there exists a µ̄ such that the following properties

1This is the model presented in [3] while assuming no exogenous income in terms of
tradeable good
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(a) Wm
µ is a turning–point of fµ(W );

(b) Wm
µ ∈ S ′ =

(
fµ(Wm

µ ), f 2
µ(Wm

µ )
)
;

(c) Wµ ∈ CR+(S ′), where WM
µ is the maximum of f l

µ(W );

are all verified ∀µ > µ̄.

(a) It is straightforward to verify that f l
µ(W ) is a strictly concave function

having a maxima in WM
µ =

(
rµ
ξρ

) 1
ρ−1 ≥ 0, ∀µ ∈ [0, +∞). On the

other hand f r
µ(W ) is a linear increasing function, ∀µ ∈ [0, +∞). Then

Wm
µ is a turning–point of fµ(W ) ⇔ f l

µ(W ) is strictly decreasing in a
left–neighborhood of Wm

µ ⇔ Wm
µ > WM

µ . Easily we have

WM
µ −Wm

µ =

(
rµ

ξρ

) 1
ρ−1

−
(

A

r

) 1
1−ρ Z

1 + µ
ρ

ρ
1−ρ =

= Z
( r

A

) 1
ρ−1

[
µ

1
ρ−1 ρ

ρ+1
1−ρ (1 + µ)

ρ
1−ρ + µ

ρ
ρ−1 ρ

ρ+1
1−ρ (1 + µ)

ρ
1−ρ − ρ

ρ
1−ρ

]

1 + µ
=

= Z
( r

A

) 1
ρ−1

(ρ(1 + µ))
ρ

1−ρ (1 + µ)
[
µ

1
ρ−1 ρ

1
1−ρ − (1 + µ)

1
ρ−1

]

then WM
µ −Wm

µ < 0 iff µ > ρ
1−ρ

= µ1 so Wm
µ is a turning–point.

(b) In order to have Wm
µ ∈ S ′, first notice that fµ(Wm

µ ) = (1− α)rWm
µ <

Wm
µ , ∀µ ≥ 0, because we are assuming (1− α)r < 1. So we only need

to verify that f 2
µ(Wm

µ ) > Wm
µ . Let q(µ) = f 2

µ(Wm
µ )−Wm

µ then

q(µ) =

(
A

r

) 1
1−ρ

Zρ
ρ

1−ρ

{
(1− α)2r

[
AZ1−ρρρ(1 + µ)ρ−1

(
1− µ

1 + µ
((1− α)r)1−ρ

)]
− 1

1 + µ

}

and it is trivial to verify that lim
µ→∞

q(µ) = 0+ so it must exist a µ2 such

that q(µ) > 0, ∀µ > µ2. So we can conclude that Wm
µ belongs to S ′,

∀µ > µ2.

(c) In order to have WM
µ /∈ S ′, a sufficient condition is that WM

µ < fµ(Wm
µ ).
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Let h(µ) = WM
µ − fµ(Wm

µ ). Easily we have

h(µ) =

(
rµ

ξρ

) 1
ρ−1

− (1− α)r

(
A

r

) 1
1−ρ Z

1 + µ
ρ

ρ
1−ρ =

= Z

(
A

r

) 1
1−ρ ρ

ρ
1−ρ

1 + µ

[
µ

1
ρ−1 ρ

1
1−ρ (1 + µ)

1
1−ρ − (1− α)r

]

In order to have h(µ) < 0, the inequality µ
1

ρ−1

(1+µ)
1

ρ−1
< (1−α)r

ρ
1

1−ρ
must hold.

Since lim
µ→∞

µ
1

ρ−1

1+µ
1

ρ−1
= 1 then if ρ

1
1−ρ < (1 − α)r (that is verified for

economically suitable values of the parameters), the inequality holds
∀µ > µ3.

Finally, let µ̄ = max{µ1, µ2, µ3} then statements (a) and (b) and (c) hold
∀µ > µ̄ and Proposition 4.1 is proved.

0 10
0

10

Wµ

fµ(Wµ)

fµ

fµ(Wµ
m) f2µ(Wµ

m)

Figure 1: The invariant set owned by fµ as defined in (1) for a sufficiently
high value of µ. In the simulation we choose µ = 40 while µ̄ ' 25.24.

Corollary 4.2. Set S is fµ(W )–invariant, ∀µ > µ̄.

The proof is trivial and left to the reader.
In figure 1 the invariant set S is pictured for a sufficiently high value of µ.

In the following simulations we fix all the parameters but µ at economically
plausible values (α = 0.8, ρ = 1

3
, r = 1.02, A = 1.5 and Z = 100).
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Now we consider the case of µ > µ̄. Notice that this case can be studied in
a simpler way if we compose function fµ(W ) : S → S by an homeomorphism
h in such away gµ(x) = h(f(h−1)) : [0, 1] → [0, 1]. Of course the dynamics of
fµ and gµ are conjugate, that is, the two functions have the same geometric
properties (notice that function h is simply a linear transformation depend-
ing on µ that sends fµ(Wm

µ ) to 0 and f 2
µ(Wm

µ ) to 1, for each µ) and they
exhibit the same dynamics. The advantage of working with gµ instead of fµ

lies on the fact that the windows where the asymptotic dynamics occurs are
unchanging with µ (namely [0, 1]) hence, the static comparative among dif-
ferent values of µ is much easier. If we denote by gl

µ and gr
µ the two piecewise

components (left and right respectively), then gµ is defined as follow:

gµ(x) =

{
gl

µ(x), 0 ≤ x < xm
µ ;

gr
µ(x), xm

µ ≤ x ≤ 1.
(2)

where gl
µ(x) is a monotone decreasing concave function while gr

µ(x) is a linear
function with constant slope (1 − α)r. Then it is straightforward to prove
the following proposition.

0 1
0

1

x

gµ(x)

g
40

g
58

g
100

Figure 2: Scheme of gµ in the cases of: gµ(1) ≤ x?
µ < xm

µ when µ = 40;
x?

µ < gµ(1) < xm
µ when µ = 58 and x?

µ < xm
µ ≤ gµ(1) when µ = 100.

Some computations show that, given the other parameters values we choose,
µm ' 54.925 while µM ' 60.936.

Proposition 4.3. Let gµ(x) given by (2). Then gµ(x) is an F–function.
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Proof. Since gµ has in [0, 1] the same geometric properties that fµ has in S,
then the following considerations hold.

(i) gµ(I) goes from the image of the minimum point that is gµ(xm
µ ) = 0 up

to the maximum between gµ(0) = 1 and gµ(1) < (1− α)r < 1, ∀µ. So
gµ(I) = I and I is gµ–invariant;

(ii) As we proved in Proposition 4.1, if µ > µ̄ then fµ(W ) is decreasing
in [fµ(Wm

µ ),Wm
µ ) and strictly increasing on (Wm

µ , f 2
µ(Wm

µ )] so gµ(x)
is decreasing on Il = [0, xm

µ ) and strictly increasing on Ir = (xm
µ , 1],

∀µ ∈ M = (µ̄, +∞);

(iii) lim
µ→sup M

xm
µ = lim

µ→sup M
Wm

µ = 0 and inf
µ∈M

gµ(1) > 0;

(iv) gµ(x) = (1− α)rx < x, because of (1− α)r < 1, ∀x ∈ Ir.

Since gµ is an F -function, we can conclude that it does exist a µM such
that the map has chaos properties for all µ ≥ µM as we proved in Theorem
3.1. Furthermore, considering that both the fixed point x?

µ and the turning
point xm

µ are strictly monotone decreasing functions of µ while gµ(1) is a
strictly monotone increasing function of µ, it can be proven that there exist
two values of µ, say µM > µm > µ̄ such that:

• gµ(1) ≤ x?
µ < xm

µ ,∀µ ∈ (µ̄, µm];

• x?
µ < gµ(1) < xm

µ , ∀µ ∈ (µm, µM);

• x?
µ < xm

µ ≤ gµ(1),∀µ ∈ [µM , +∞).

In figure 2 these three cases are presented for different given values of µ.
Finally, as postulated by Theorem 3.1 here proven, ∀µ ∈ [µM , +∞) a Li–

Yorke point does exist. In fact, let yµ = (xm
µ )−1 > xm

µ then yµ is a Li–Yorke
point as pictured in Figure 3.

Because of the existence of this point, there exists a cycle of every order in
[0, 1] and the Li–Yorke Theorem [6] also holds so the map has chaos properties
(about such properties see [4]).

The Theorem we demonstrated proves chaos properties for economies
that are sufficiently developed in financial terms. It means that there is no
sufficiently high level of financial development to guarantee stability in small
economies facing moral hazard problems according to the results reached in
[3] using numerical simulations.
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0 1
0

1

x

gµ(x)

xµ
m yµ

Figure 3: Existence of the Li–Yorke point yµ = (xm
µ )−1. Here µ = 70 > µM .
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