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1 Introduction

Since the breakdown of the Bretton Woods system, the relevance of the

exchange rate stabilization policies has been causing frequent and forceful

interventions of the Government Authorities. The reactions to the Asian

financial crisis or the European Monetary System (ERM) accession repre-

sent only some recent examples. The economies of East Asia have adopted

a variety of foreign exchange rate policies, ranging from currency board sys-

tem to “independently floating” exchange rates. Most of Asian economies

have implemented “managed floats” that allow their local currency to fluc-

tuate over time within a limited range (Rajan and Zhang, 2002). The recent

enlargement of the European Union to 27 countries requires that the new

Member States fulfill a period of managed floating regime (ERM II) before

the adoption of the Euro. In this context, together with monetary and fiscal

challenges, exchange rate policies have become a key tool for the new EU

members. They have to set the optimal exchange rate policy to manage

the hardening against the Euro. Government Authorities’ interventions are

required to stabilize the exchange rate even before the participation to the

ERM II (Dean, 2004).

Another example is provided by the Chinese exchange rate system. On July

2005, the China’s Authorities announced that the Renmibi (RMB) would

have been managed “with reference to a basket of currencies” rather than

being pegged to the dollar. According to the Public Announcement of the

People Bank’s of China (PBOC) on reforming the RMB Exchange Rate

Regime, the Chinese Authorities “make adjustment of the RMB exchange

rate band when necessary according to market developments as well as the

economic and financial situation” and maintain “the RMB exchange rate

1



basically stable at an adaptive and equilibrium level, so as to promote the

basic equilibrium of the balance of payments and safeguard macroeconomic

and financial stability”1. Although the RMB exchange rate adjustments

initially were too cautious, the announcement made possible transitional

arrangements like those applied in other emerging countries showing the

PBOC’s awareness of the unsustainability of the pegging to the US Dollar.

The managed floating exchange rate system together with a more indepen-

dent monetary policy might help the Chinese economy to cope better with

both the internal and external macroeconomic shocks to which a developing

country may be exposed (Goldstein and Lardy, 2009).

Exchange rate stabilization policies represent a crucial issue, they have been

largely analyzed in the literature. Krugman (1991) emphasized the role of

official interventions at the margin of a currency band, assuming that the

fundamentals driving the exchange rate follow a random walk with constant

variance. Most empirical evidences are controversial, leaving many questions

unanswered, as the issues of the optimal monetary policy and the optimal

width of the currency band (if adopted). Improvements of the Krugman’s

framework are obtained thank to the extensions of the basic model (amongst

others: Jeanblanc-Picqué, 1993; Miller and Zhang, 1996; Mundaca and Ok-

sendal, 1998; Im, 2001; Zampolli, 2006; Castellano and D’Ecclesia, 2007).

Jeanblanc-Picqué (1993) applies impulse control methods to show that us-

ing a diffusion process with constant coefficients it is possible to keep the

exchange rate in a given target zone with discrete interventions. Miller et

al. (1996) find a subgame-perfect solution for a Central Bank aiming at

stabilizing the exchange rate in a target zone, given proportional costs of in-
1http://www.pbc.gov.cn
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tervention. Mundaca and Oksendal (1998) combine continuous and impulse

controls to stabilize the exchange rate. They use a jump diffusion process

with constant variance and drift to describe the exchange rate dynamics. Im

(2001) presents the central bank’s optimal intervention strategies to find the

policy which minimizes the value of the loss function. Modelling the econ-

omy as switching randomly between different regimes with time-invariant

transition probabilities, Zampolli (2006) examines the trade-offs deriving

from sustained deviations of the exchange rate from fundamentals, and ex-

treme changes. Castellano and D’Ecclesia (2007) solve a stochastic optimal

control model to describe the exchange rate dynamics in a managed floating

regime assuming Government Authorities aim to keep the aggregate funda-

mental not too far from a predetermined target.

In this paper, optimal policies and exchange rate stabilization are taken into

account. We assume that the exchange rate is a function of the aggregate

fundamental whose dynamics are described by a stochastic differential equa-

tion (SDE) with a general functional shape for the state-dependent drift and

variance. The drift of the fundamental is controlled to maintain the fun-

damental’s level as close as possible to a stochastic target. We introduce

a disutility function that depends: 1) on the difference between the aggre-

gate fundamental and its target dynamics; 2) on the control variable. The

implicit costs associated with the interventions are measured in terms of

disutility. The stochastic control problem is solved using the dynamic pro-

gramming approach and the optimal strategies are obtained in two steps:

deriving the unique solution of the Hamilton Jacobi Bellman (HJB) in the

viscosity sense (Barles and Rouy, 1998); formalizing the existence of the

optimal strategies and their related paths by analyzing the regularity prop-

erties of the value function. The optimal trajectory of the exchange rate
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is fully characterized. We also show that, under particular conditions, the

optimal width of the currency band can be determined.

The main innovations of this paper are represented by: 1) to choose a gen-

eral shaped function for the drift and variance of the stochastic dynamics of

the aggregate fundamental; 2) to introduce a disutility function to provide

a measure of the implicit costs of the intervention; 3) to determine the en-

dogenous currency band.

The work is organized as follows: next section describes the model and

the related optimal control problem; section 3 presents the properties of

the value function and the optimal strategies; in section 4 a particular case

is discussed; some concluding remarks are presented in section 5, and the

mathematical derivations are reported in the Appendix.

2 The Model

This section describes the model developed to study Government Author-

ity’s interventions in a managed floating regime. The building blocks of the

model are given by the exchange rate dynamics depending on some ran-

dom fundamental, the presence of a stochastic target and the optimization

problem.

2.1 The exchange rate dynamics

We assume that the exchange rate depends on both some current funda-

mentals and expectations of future values of the exchange rate. The (log) of

the spot exchange rate at any time t, st, is assumed to depend on an aggre-

gate ”fundamental”, ft, and a speculative term proportional to the expected

4



change in the exchange rate. As stated in Svensson (1992), the fundamental

absorbs the driving forces of the exchange rate (i.e. monetary and fiscal

policy variables, domestic output, price level, foreign interest rate, etc.).

Given a filtered probability space (Ω,F , {Ft}t≥0, P ), a simple representation

of the spot exchange rate dynamics is given by:

stdt = ftdt + λEt[dst] λ > 0, (1)

where:

• st is the logarithm of the exchange rate defined as unit of domestic

currency per unit of the reference currency;

• ft denotes the logarithm of the aggregate fundamental;

• λ is a constant positive parameter which can be interpreted as the

semielasticity of the exchange rate with respect to the instantaneous

rate of currency depreciation;

• Et[dst] measures the expected depreciation of the exchange rate with

respect to time t.

The process for the fundamental, ft, obeys the stochastic differential equa-

tion:

dft = µf (ft, θt)dt + σf (ft)dB1t, (2)

where:

• θt ∈ Θ, represents the control variable, available to the Government

Authorities, to manage the current fundamental’s dynamics and Θ is

the admissible region defined as

Θ :=
{

θ : [0,+∞)×Ω → [θm, θM ] Ft−adapted processes, θm < θM

}
;

(3)
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• E[f2
t ] < +∞;

• µf : R× [θm, θM ] → R;

• σf : R → R;

• B1t is a standard Brownian Motion.

We assume that the initial value of the fundamental, f0, is deterministic.

The effective aggregate fundamental, ft, consists of exogenous and endoge-

nous components. As we will see later, Government Authorities can in-

tervene on the endogeneous variables using monetary, economic and fiscal

policies, in order to maintain the fundamental, ft, broadly in line with its

target. In particular, equation (2) states that Government Authorities con-

trol the drift of the fundamental, µf (ft, θt), by the control variable, θt.

We introduce a target for the fundamental, f̃t, which includes a set of vari-

ables affecting the exchange rate. For instance, some of the parameters

set by the European Commission during the process of EU accession have

to show some specific behavior, or some macroeconomic variables have to

perform according to given targets. In the case of China, the PBOC offi-

cially sets targets for money supply (Burderkin and Siklos, 2008) and credit

growth ”to maintain stability of the value of the currency and thereby pro-

mote economic growth”2.

The target fundamental may shift randomly from time to time given that

policy makers make decisions based on expectations of how the future will

unfold and practical experiences show that deterministic target, implying

very strong appointments for Government Authorities, could be destabiliz-

ing (Svensson, 2005).
2http://www.pbc.gov.cn
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In this setting an adjustment of the target may be required according to

the position of the current fundamental. We assume the evolution of the

potential target be described by a SDE, whose stochastic component, B2t,

is not independent from the stochastic component of the fundamental, B1t:

df̃t = βtdt + σ̃tdB2t, (4)

where:

• β and σ̃ are defined on [0,+∞);

• f̃0 is the deterministic initial value of f̃t;

• B2t is a standard Brownian Motion and

dB1tdB2t = ρdt. (5)

The correlation coefficient ρ in (5) provides a measure of the relationship

existing between the fundamental dynamics and its target. If ρ = 0, the

adjustment is exogenous, the target policies are independent from the fun-

damental dynamics and depend only on probable future developments of

the exogeneous variables. When ρ 6= 0, endogenous re-targetings occur and

greater attention is paid to the changes in the value of the fundamental, i.e.

the current state of the economy.

We introduce a new variable xt := ft − f̃t whose dynamics, given (2) and

(4), on the filtered probability space (Ω,F , {Ft}t≥0, P ), are given by:

dxt = dft − df̃t = µ(xt, θt)dt + σ(xt)dBt, t > 0 (6)

where:

• µ (xt, θt) = µf (ft, θt)− βt;
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• Bt is a Brownian Motion3;

• σ(xt) =
√

σ2
f (ft) + σ̃2

t − 2ρσf (ft)σ̃t;

• σ(x) 6= 0, ∀x ∈ R;

• µ is a continuous real value bounded function with respect to the

process θ.

µ and σ satisfy the usual regularity conditions for the existence and unique-

ness of the solution for (6), with x0 = x which is the deterministic starting

point of the dynamics xt.

2.2 The optimization problem

The decision maker in order to reduce its disutility may intervene on its

preferences as well as on the fundamental. The expected disutility allows to

assess the Government Authorities’ policies and the total ”social” costs of

the stabilization process.

The disutility function depends on the distance of the fundamental value

from its target, and it is controlled by θt. The larger the distance between

the fundamental and the target, the lower the satisfaction and the higher the

disutility. To solve the control problem means to find the optimal control

rule θt, as a function of the state variable xt, that minimizes the expected

discounted disutility and the implicit costs of the control policies. We for-

malize the dynamic optimization problem in terms of the value function,

V : R → R, presented as:

V (x) := inf
θ∈Θ

J(θ, x), (7)

3the sum of Brownian motions is still a Brownian Motion (Karatzas and Shreve, 1988),

and standard rules are used to derive the drift and the variance
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with

J(θ, x) := Ex
{∫ +∞

0
e−γtu(|xt|, θt)dt

}
, for x0 = x, (8)

where:

• γ > 0 is the discount factor;

• u : [0,+∞) × [θm, θM ] → R is the Government Authority’s disutility

function;

• |xt| = |ft − f̃t| is the distance of the fundamental from its target;

• Ex is the expected value of the disutility, u, depending on the absolute

value of xt, whose dynamics are given by (6), with initial position x.

Since V is symmetric with respect to the origin we do not loose any generality

assuming x ≥ 0.

As stated above, u is increasing with respect to |xt| and continuous with

respect to θ. With no loss of generality, we assume that the disutility function

is essentially bounded with respect to x and this implies, together with

the continuity of u with respect to θ in [θm, θM ], that also V is essentially

bounded with respect to x.

To clarify the concept of disutility function it may be useful to list some

specific functions:

• u(|xt|, θt) = θ2
t · e|xt|; the disutility grows rapidly as the distance of the

fundamental from its target, |xt|, increases; Government Authorities

should intervene as soon as possible to avoid an explosion of the disutil-

ity; the control variable θ should be pushed downward to compensate

the growth of e|xt|.
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• u(|xt|, θt) = |xt|exp
[

1
θt

]
; the disutility grows linearly as the gap |xt|

increases at a rate depending on θ; Government Authorities should

intervene to reduce the growth of the disutility, by pushing upward

the control variable θ.

The introduction of the disutility in the objective functional and its depen-

dence on the control variable guarantees that the optimal solution is also

the one minimizing the costs of the controls. The smaller is the distance

between the observed fundamental and the target, the smaller is the cost of

the control measured in terms of disutility.

3 The optimal policies

In this section, following the dynamic programming approach, we study

the properties of the value function and derive the implied Government

Authority’s optimal strategies.

Theorem 1 The value function V is the unique classical solution of the

HJB equation:

γV (x) =
σ2(x)

2
V ′′(x) + min

θ∈[θm,θM ]

{
u(x, θ) + µ(x, θ)V ′(x)

}
; (9)

in (0,+∞), with boundary condition V (0) = 0.

The proof is reported in the Appendix.

By Theorem 1, the optimal strategies in feedback form can be obtained.

Theorem 2 Consider x ∈ [0,+∞) and define

θ∗ ∈ argminθ

{σ2(xt)
2

V ′′(xt) + u(|xt|, θ) + µ(xt, θ)V ′(xt)
}

.
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1. The closed loop equation:




dxt = µ(xt, θ
∗)dt + σ(xt)dBt, t > 0

x0 = x,

(10)

admits a unique solution.

2. Assuming that x̄t is the solution of the closed loop equation, we obtain

θt depending on x̄t; so we set θ̄t := θ∗(x̄t) and obtain:




dx̄t = µ(x̄t, θ̄t)dt + σ(x̄t)dBt, t > 0

x̄0 = x.

Since J(x, θ̄) = V (x) holds, θ̄t is the optimal value for the control

variable, with the related optimal trajectory, x̄t.

The proof is reported in the Appendix.

The existence of the optimal strategy x̄t implies the existence of an optimal

trajectory for the fundamental, f∗t , and for the exchange rate dynamics, s∗t .

Given the relationship between xt and ft, the optimal fundamental path is

f∗t := x̄t + f̃t.

Next result provides a characterization of the optimal exchange rate dynam-

ics:

Proposition 3 Given the optimal fundamental f∗t , then the optimal ex-

change rate dynamics can be written as s∗t = h(f∗t ), where the function h is

the solution of the following second order differential equation:

σ2
f (f∗t )
2

h′′(f∗t ) + Et[µf (f∗t , θ̄t)]h′(f∗t )− 1
λ

h(f∗t ) = −f∗t
λ

. (11)
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Proof. We look for solution of (1) introducing a function h:

s∗t = h(f∗t ). (12)

Applying Ito’s Lemma to (12), we have:

ds∗t = h′(f∗t )df∗t +
1
2
h′′(f∗t )(df∗t )2 =

= h′(f∗t )[µf (f∗t , θ̄t)dt + σf (f∗t )dB1t] +
1
2
h′′(f∗t )σ2

f (f∗t )dt. (13)

The conditional expectation of ds∗t is given by:

Et[ds∗t ] = h′(f∗t )Et[µf (f∗t , θ̄t)]dt +
1
2
h′′(f∗t )σ2

f (f∗t )dt.

Therefore, equation (1) can be rewritten as

h′(f∗t )Et[µf (f∗t , θ̄t)]dt +
1
2
h′′(f∗t )σ2

f (f∗t )dt =
1
λ

(s∗t − f∗t )dt. (14)

Given (12) and (14), h can be found as solution of (11).

4 Some applications: derivation of the optimal

currency band

To provide an explicit formalization of the optimal values for the control

variable, θ, as given in Theorem 1, in this section some particular cases are

discussed.

First of all, we argue that µ and u are assumed to exhibit the same behavior

w.r.t. θ in [θm, θM ], i.e. if x increases, then u and µ increase. Therefore, the

intervention of the Government Authorities through the control θ should

push downward simultaneously µ and u. In this particular example we
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assume the existence of A,B, C ⊆ [0, +∞) such that A ∪ B ∪ C = [0, +∞)

and

A = {x ∈ [0, +∞) |µ(x, θ), u(x, θ) increasew.r.t. θ in [θm, θM ]} ;

B = {x ∈ [0,+∞) |µ(x, θ), u(x, θ) are constantw.r.t. θ in [θm, θM ]} ;

C = {x ∈ [0,+∞) |µ(x, θ), u(x, θ) decreasew.r.t. θ in [θm, θM ]} .

The optimization problem can be represented introducing the map gx :

[θm, θM ] → R such that:

gx(θ) = u(x, θ) + µ(x, θ)V ′(x), ∀x ∈ [0, +∞). (15)

According to Theorem 1, the optimization problem is solved by minimizing

the function gx w.r.t. θ. By assuming the right regularity for the functions

µ and u and applying the first order condition we get:

g′x(θ) =
∂u(x, θ)

∂θ
+ V ′(x)

∂µ(x, θ)
∂θ

= 0. (16)

Under particular conditions on model, we are able to derive some interven-

tion bands for x, i.e. the regions where the optimal control rule is invariant.

In particular, it is easy to choose µ and u such that there exist two thresh-

olds x1, x2 ∈ [0, +∞), with x1 < x2, such that one of the following situations

occur:

(i) A = [0, x1), B = [x1, x2], C = (x2, +∞);

(ii) A = (x2, +∞), B = [x1, x2], C = [0, x1).

A and C represent two intervention bands for x. The optimal strategies can

be written as follows:
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(i)

θ∗(x) =





θm when x < x1

θM when x > x2.

(17)

(ii)

θ∗(x) =





θM when x < x1

θm when x > x2.

(18)

When x ∈ [x1, x2], then θ∗(x) can freely fluctuate. If x ∈ [x1, x2], then

f∗0 ∈ [x1 + f̃0, x2 + f̃0]. Furthermore, the behavior of the optimal exchange

rate dynamics is fully described by the function h in (12), which depends

on µf , σf , λ. Thus, when h is strongly monotonic, for instance increasing,

then f∗0 ∈ [x1 + f̃0, x2 + f̃0] implies that s∗0 ∈ [h(x1 + f̃0), h(x2 + f̃0)]. The

interval [h(x1 + f̃0), h(x2 + f̃0)] represents the optimal currency band for

the exchange rate dynamics, where no intervention may be applied by the

Government Authorities.

To provide an intuitive understanding of the optimal strategies, we introduce

the functions: u1, µ1, α : [0, +∞) → R and u2, µ2 : [θm, θM ] → R, such that

the drift and the disutility functions can be defined, respectively, as:

µ(x, θ) = µ1(x)µ2(θ), (19)

u(x, θ) = u1(x)u2(θ) + α(x), (20)

where (19) and (20) satisfy the regularity conditions given in Section 2 and

µ1 is increasing w.r.t. x.

In (19), when x increases, the Government Authorities may apply a control

θ, through µ2, in order to reduce µ(x, θ) and drive the process of the funda-

mental, ft, closer to its target, f̃t. Equation (20) provides a general example
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of the specific disutility functions introduced in subsection 2.2.

Given (19) and (20), the map gx becomes:

gx(θ) = u1(x)u2(θ) + µ1(x)µ2(θ)V ′(x) + α(x), (21)

and applying the first order condition we get:

g′x(θ) = u1(x)u′2(θ) + µ1(x)µ′2(θ)V
′(x) = 0, (22)

i.e., by assuming u1(x) 6= 0,

u′2(θ)
µ′2(θ)

= −µ1(x)V ′(x)
u1(x)

. (23)

Assume that µ′2, u
′
2 6= 0 and the convexity of u2 and µ2 in [θm, θM ]. If

u′′2(θ)
u′2(θ)

>
µ′′2(θ)
µ′2(θ)

or
u′′2(θ)
u′2(θ)

<
µ′′2(θ)
µ′2(θ)

, ∀ θ ∈ [θm, θM ], (24)

then the function ρ(θ) = u′2(θ)
µ′2(θ)

is invertible and the optimal control θ∗(x) is

given by:

θ∗(x) = ρ−1

(
−µ1(x)V ′(x)

u1(x)

)
. (25)

It is possible to consider the limit case of two dominant optimal policies:

one expansionary and the other restrictive (i.e.: optimal policies of bang-

bang type). In this case, the optimal currency band collapses to a single

value, and the Monetary Authority does not intervene when the deviation

between the theoretical and the observed fundamental is equal to a certain

endogeneous threshold.

Assume µ2(θ) = u2(θ) = n(θ) twice differentiable and convex in (θm, θM ).

The map gx becomes:

gx(θ) = n(θ)[u1(x) + µ1(x)V ′(x)] + α1(x)V ′(x) + α(x), (26)
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and the first order condition gives:

g′x(θ) = n′(θ)[u1(x) + µ1(x)V ′(x)] = 0. (27)

For µ1(x) 6= 0 in [0,+∞), we have two cases:

• if

V ′(x) +
u1(x)
µ1(x)

= 0, for x ∈ [0, +∞), (28)

then (27) is satisfied for each θ ∈ [θm, θM ] and the value x represents

a specific distance between the fundamental and its target for which

Government Authorities may apply arbitrary decision rules;

• if

V ′(x) +
u1(x)
µ1(x)

6= 0, for x ∈ [0, +∞), (29)

then (27) cannot be satisfied assuming an increasing (decreasing) n,

i.e. when n′(θ) > 0(< 0) for θ ∈ [θm, θM ]. However, the continuity of

gx and Weierstrass’ Theorem guarantee the existence of the optimal

strategies, belonging to {θm, θM}. More precisely, a critical region

Γ ⊆ [0, +∞) can be defined as follows:

Γ :=
{

x ∈ [0, +∞) |V ′(x) +
u1(x)
µ1(x)

> 0
}

. (30)

We have:

– if n′(θ) > 0 in [θm, θM ], then

θ∗(x) =





θm when x ∈ Γ

θM when x ∈ [0, +∞)\ (Γ ∪ {x})
(31)
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– if n′(θ) < 0 in [θm, θM ], then

θ∗(x) =





θM when x ∈ Γ

θm when x ∈ [0, +∞)\ (Γ ∪ {x}) .

(32)

Since u is an increasing function of x, then by (7) and (8) V increases.

As a consequence, further assumptions on u1 and µ1 allow to derive some

intervention bands for x. In particular:

• if µ1(x) · u1(x) > 0, for each x ∈ [0, +∞), then V ′ + u1
µ1

> 0 in [0, +∞)

and Γ = [0,+∞);

• if µ1(x) · u1(x) < 0, for each x ∈ [0, +∞), different subcases occur.

Since V is twice differentiable and concave, then V ′ is a decreasing

function of x and therefore:

– if V ′(0) + u1(0)
µ1(0) < 0, then Γ = ∅;

– if lim
x→+∞V ′(x) + u1(x)

µ1(x) > 0, then Γ = [0, +∞);

– if V ′(0)+ u1(0)
µ1(0) > 0 and lim

x→+∞V ′(x)+ u1(x)
µ1(x) < 0, then x is unique

and Γ = [0, x).

By (31) and (32), when Γ = ∅ or Γ = [0,+∞), then there exists an unique

optimal strategy θ∗ ∈ {θm, θM} that Government Authority can apply. In

particular:

• for Γ = ∅ and n increasing (decreasing), then θ∗(x) = θM (θ∗(x) = θm)

for each x ∈ [0, +∞);

• for Γ = [0,+∞) and n increasing (decreasing), then θ∗(x) = θm

(θ∗(x) = θM ), for each x ∈ [0, +∞).
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When Γ = [0, x), then Γ and (x, +∞) represent two optimal intervention

bands for x.

In this particular case, the optimal currency band for the exchange rates

collapses on a singleton. Given the optimal fundamental path f∗t := x̄t + f̃t,

then x = x implies f∗0 = x + f̃0. By definition of the function h in (12), we

have that s∗0 = h(x + f̃0) is the threshold for the exchange rate where no

intervention is applied by the Monetary Authority. The set {h(x + f̃0)} is

the degenerate currency band.

5 Conclusions

This paper presents a disutility based drift control model for the exchange

rate dynamics, in the framework of managed floating regimes. The dynamics

of the exchange rate is described as a function of the aggregate fundamental

at time t, ft, which follows a Brownian Motion with state dependent drift

and volatility. The process for the fundamental dynamics are obtained as

the solution of a stochastic control problem describing the Government Au-

thorities’ aim to keep the value of the fundamental as close as possible to

its target. An expected disutility function minimization problem is solved,

introducing the concept of the viscosity solutions.

We show that under particular conditions, it is possible to obtain the op-

timal width of the currency band and to incorporate regime switching in

the exchange rate dynamics. The model is realistic since it suggests a more

adequate process to describe the exchange rate dynamics and provides an ac-

curate analysis of the observed phenomenon with respect to simple diffusion

processes or Markov switching models, which may lack in economic content.

The model takes into account the time-varying features of the dynamics of
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the exchange rates and the optimal strategies that can be applied by the

Government Authorities to stabilize the exchange rate within a band. An

empirical analysis of this theoretical model can be performed and we leave

this topic to future researches.

Appendix

5.1 Proof of Theorem 1

By Dynamic Programming Principle (see Yong and Zhou, 1999), we have

the following result:

Proposition 4 If V ∈ C2((0, +∞))∩C0([0,+∞)), then (9) holds in (0,+∞),

with the boundary condition V (0) = 0.

Equation (9) with the boundary condition holds formally, in the sense that

the regularity conditions required for the function V are assumed. Since V is

generally not twice differentiable, then we proceed by proving the existence

and uniqueness of the solution of (9) with boundary conditions in a weak

sense. To this end we use the concept of the viscosity solutions (for a com-

plete survey on viscosity solutions we refer to Crandall et al., 1992; Barles,

1994; Fleming and Soner, 2006). The following result states the existence

and uniqueness of the solution of the HJB (9) in the viscosity sense. Such

solution coincides with V .

Theorem 5 The value function V is continuous in (0, +∞) and can be ex-

tended continuously on [0,+∞). Moreover, V is the unique viscosity solution

of the HJB equation (9) with the boundary condition.

Proof. The proof is a direct consequence of a result in Barles and Rouy

(1998).
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We now need to discuss the regularity properties of the value function to

prove Theorem 1. In fact, if V is at least twice differentiable, then Theorem

5 guarantees that it is the unique classical solution of (9) with boundary

conditions.

We firstly need to prove that V is concave. To this end, we fix x ∈ [0, +∞)

and real-valued function v ∈ C0[0, +∞) ∩C2(0, +∞) and define the Hamil-

tonian:

H(x, v(x), v′(x), v′′(x)) :=

γv(x)− σ2(x)
2

v′′(x)− min
θ∈[θm,θM ]

[
u(x, θ) + µ(x, θ)v′(x)

]
. (33)

Writing

−H(x,−v(x),−v′(x),−v′′(x)) = 0, ∀ x ∈ (0, +∞),

we obtain:

γv(x)− 1
2
σ2(x)v′′(x) + min

θ∈[θm,θM ]

[
u(x, θ)− µ(x, θ)v′(x)

]
= 0, (34)

for each x ∈ (0, +∞). The following lemma holds:

Lemma 6 (Barles, 1994) ϕ ∈ C0(0, +∞) is a viscosity supersolution (sub-

solution) of (9) if and only if ψ := −ϕ is a subsolution (supersolution) of

(34).

The previous result implies the following corollary.

Corollary 7 If ϕ is the unique viscosity solution of (9), then ψ := −ϕ is

the unique viscosity solution of (34).

In the following lemma we recall an important general result due to Alvarez

et al. (1997). This result is useful to prove concavity.
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Lemma 8 (Alvarez et al., 1997) Let us consider an interval I ⊆ R and

define an hamiltonian operator

H̃ : Ī ×R×R×R → R.

Assume that H̃ satisfies the following properties:

• there holds

H̃(x, v, p, q) = 0 ∀x ∈ I; (35)

• H̃ ∈ C0(Ī ×R×R×R);

• H̃ is elliptic;

• It results

(x, v) 7→ H̃(x, v, p, 0)

concave, for every p.

Let v lower semi-continuous in Ī be a viscosity supersolution of (35) and

define the convex envelope v∗∗ of v as

v∗∗(x) := inf
{

λ1v(x1) + λ2v(x2) |x = λ1x1 + λ2x2,

with xi ∈ I, λi ≥ 0, i = 1, 2, λ1 + λ2 = 1
}

.

Then v∗∗ is lower semi-continuous in Ī and it is a viscosity supersolution of

(35).

Theorem 9 V is a concave function in [0, +∞).

Proof. In order to prove the theorem, it is sufficient to prove that u := −V

is a convex function. We use Corollary 7 and apply it to equation (34).

Let us now define:

0 = γv(x)− 1
2
σ2(x)q + min

θ∈[θm,θM ]

[
u(x, θ)− µ(x, θ)p

]
=:
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=: H̃(x, v, p, q) ∀x ∈ [0, +∞). (36)

It results:

H̃(x, v, p, 0) = γv(x) + min
θ∈[θm,θM ]

[
u(x, θ)− µ(x, θ)p

]
.

A direct computation gives us that the map

(x, v) 7→ H̃(x, v, p, 0)

is concave for every p.

Furthermore, since σ 6= 0, for each x ∈ [0, +∞), then H̃ is an elliptic

operator.

Since the hypotheses of Lemma 8 hold, the convex envelope v∗∗ of v is a

viscosity supersolution of (36).

Using the definition of convex envelope, for each x ∈ [0,M ], we have:

v∗∗(x) = inf
{

λ1v(x1) + λ2v(x2) |x = λ1x1 + λ2x2

}
≤ v(x), (37)

with the choice λ1 = 1, λ2 = 0, x1 = x, x2 arbitrary in [0,M ].

If w1 is a viscosity subsolution and w2 is a viscosity supersolution of (36)

then, from the Existence and Uniqueness Theorem 5, we get w1 ≤ w2.

Given this result and (37), the convex envelope v∗∗ of v is a viscosity sub-

solution of (36).

By Theorem 5 and Corollary 7, v∗∗ is the unique viscosity solution of (36)

and, hence, the unique viscosity solution of (34). Therefore v = −V is con-

vex in [0,M ] and the theorem is completely proved.

Next result guarantees that the viscosity solution of the HJB equation is a

classical solution.

Theorem 10 V is twice differentiable in (0, +∞).
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Proof. Since σ(x) 6= 0, for each x ∈ (0, +∞), equation (9) is uniformly

elliptic in (0, +∞). Furthermore, given the concavity/continuity and adapt-

ing Alexandrov’s Theorem to this case (see Fleming and Soner, 2006), we

know that V is twice differentiable a.e. in (0, +∞). Therefore, it follows

that V ′ ∈ L∞(0, +∞), given µ, σ, u ∈ L∞((0,M)), by definition.

Moreover, we can write, a.e. in (0, +∞),

V ′′(x) =
2

σ2(x)

{
γV (x)− min

θ∈[θm,θM ]

[
u(x, θ) + µ(x, θ)V ′(x)

]}
. (38)

The right-hand side of the (38) is the sum of functions that are in L∞(0, +∞)

and, hence, we can state that V ′′ ∈ L∞(0, +∞).

Using previous arguments, we obtain that V is a function in the Sobolev

space W 2,∞(0, +∞).

Since (0, +∞) is an interval, the hypotheses of the Sobolev’s Embedding

Theorem (see Gilbarg and Trudinger, 1977) are trivially true and we get

V ∈ Cm(0, +∞), ∀m ∈ [0, 2). Therefore, V ′ is a continuous function, and

the second term of (38) is a combination of continuous functions: V ′′ ∈
C0(0, +∞).

The result is proved.

Proof of Theorem 1. By Theorems 5 and 10, we have the thesis.

5.2 Proof of Theorem 2

We first present a Verification Theorem to identify the optimal strategies

and the related optimal trajectories.

Lemma 11 Assume that v ∈ C0[0, +∞) ∩ C2(0, +∞) is the (classical) so-

lution of (9) with the boundary condition V (0) = 0.

Then:
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• v(x) ≤ V (x), ∀x ∈ [0,+∞).

Let us, now, consider a pair of stochastic processes, (θ∗, x∗) with x∗0 = x,

such that

θ∗ ∈ argminθ

{σ2(x∗t )
2

v′′(x∗t ) + u(|x∗t |, θ) + µ(x∗t , θ)v
′(x∗t )

}
,

then, θ∗ is optimal in x, and x∗ is the related optimal trajectory, if and only

if v(x) = V (x), ∀x ∈ [0, +∞).

A detailed proof can be found in Fleming and Soner, 2006.

Given Theorems 1, 5 and 10, we can rewrite the HJB as:

0 = H(x, V (x), V ′(x), V
′′
(x)) = inf

θ∈[θm,θM ]
Hθ(x, V (x), V ′(x), V

′′
(x)), (39)

where

Hθ(x, V (x), V ′(x), V
′′
(x)) :=

γV (x)− σ2(x)
2

V ′′(x)− u(x, θ)− µ(x, θ)V ′(x). (40)

Since µ, u ∈ C0([θm, θM ]), then the function Hθ ∈ C0([θm, θM ]) and Weier-

strass’s Theorem guarantees the existence of the absolute minimum point

θ∗ ∈ [θm, θM ] of the function Hθ defined in (40). Proof of Theorem 2.

1. The proof follows from the existence of θ∗, shown in Lemma 11, and

by the existence and uniqueness of the solution for the state equation

(6).

2. The proof is due to Lemma 11.
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