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Abstract

This work provides a framework to analyze the role of financial development as
a source of endogenous instability in emerging economies subject to moral hazard
problems. We study a piecewise linear dynamic model describing a small open econ-
omy with a tradable good produced by internationally mobile capital and a country
specific production factor, using Leontief technology. We demonstrate that emerging
markets could be endogenously unstable when large capital in—flows increase risk
and exacerbate asymmetric information problems, according to empirical evidence.
Using bifurcation and stability analysis we describe the properties of the system
attractors, we assess the plausibility for complex dynamics and we find out that
border collision bifurcations can emerge.
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1 Introduction

The facts leading to the financial crisis in the emerging markets of South-East
Asia in summer 1997, have shown how a crisis can emerge after a boom in
the fundamentals, therefore they open new theoretical approachs to financial
crises and a need for new explanations. In the case of emerging markets we
are witnessing to a new phenomenon because, differently from past crises (like
Mexico 1994 or European Monetary System 1992), such crisis was character-
ized by:
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e large capital inflows with borrowing excess! in a financial liberalization
context,

e fast economic growth driven by fundamentals with poverty reduction (Asian
miracle),

e increase in the financial risk assumed without prudential regulation and a
financial supervision system. 2

According to such considerations we think that a model that can explain such
modern financial crisis must prove that an inversion in the real aggregates with
a fall in investment and save, is not only possible but can also appear in an
unpredictable and sudden way if creditors face moral hazard problems?® when
the economy goes through financial development. This kind of explanation
needs to account for the process leading to crisis so it must be dynamic,
comparing states at different times. Furthermore, the unpredictability and
the instability of the asymptotic dynamics are explained in terms of chaotic
properties of the system attractors.

In this work we present a framework that provides an explanation to these
peculiar events according to the balance-sheet view to crises*, underlying the
real aspects of the economic environment and proving that such economies are
endogenously unstable. The macroeconomic model here studied is a dynamic,
open economy with a tradeable good produced by internationally mobile cap-
ital and a country—specific production factor, using the Leontief production
function. The two key ingredients of the model are the following.

(1) Firms face credit constraint, in the sense that there is a maximum pro-
portion, u, of their current wealth level, W;, the entrepreneurs can borrow
from banks, due to moral hazard considerations, as proved in [7]. °

(2) The level of financial development reached by the economy appears as an
explicit parameter because a high u represents a well developed financial
sector, while a low u represents an undeveloped one.

Using the discrete dynamic system theory we prove that economies are en-
dogenously unstable when going through a phase of financial development.

I The fact that macroeconomic factors, especially a boom in lending, played a key
role in the vulnerability of emerging markets to financial crises, has been discussed
in [24]. Furthermore in [11], it is stated that in Thailand the boom in lending caused
problems in its financial sector.

2 In Hong Kong and Singapore the development has been accompanied by strong
risk supervision and control, so the financial crisis was prevented.

3 The relevance of asymmetric information problems in such crises has been largely
recognized in [14].

4 Contributions to this line of research are in [1-3,9,10,18].

> The fact that the level cash flow of the firm plays an important role in the
investment, is widely recognized in [8] and in [16].



In similar works, authors considered that financial constraints on firms due to
asymmetric information considerations can play a role in the propagation of
the business cycle. For instance in [6] and [19], the authors studied a closed
economy and they showed that credit constraints can lead to oscillations.

Differently, considering open economies, in [2] the authors studied a credit
constrained model where firms have debt both in domestic and foreign cur-
rency, and they prove that the economy can easily suffer a financial crisis. A
revised version of this monetary model is offered in a later work of the same
authors, [4], where they proved that the existence of nominal price rigidities
can lead to multiple equilibria.

While the models in [2,4] focused on the monetary sector, we study a real
model of the kind considered in [1,5].

In [5] the authors developed a simple macroeconomic model where the combi-
nation between moral hazard problems in capital markets and unequal access
to investment opportunities across individuals generate endogenous and per-
manent fluctuations in aggregate GDP, investment and interest rates. In their
work the endogenous cycles are the product of two separate forces: high in-
vestment begets high profits and high investment but, at the same time, high
investment pushes up interest rates and reduces future profits and investment.
We will consider a similar mechanism in which high investment pushes up the
price of the constant country—specific factor and reduces future profits and
investment. The basic mechanism we describe is a combination of two oppo-
site forces deriving from an increase in the investment level. Firstly, a greater
investment leads to grater output and profits. Higher profits improve credit-
worthiness and fuel borrowing thus leading to grater investment. Simultane-
ously, this boom increases the demand for country—specific factor and rises its
relative price. This rise in input prices leads to lower profits and reduce cred-
itworthiness, borrowing and investment with a subsequent fall in aggregate
output. So we will be able to conclude that financial development may desta-
bilize economies that start from an intermediate level of financial development
according to the experience documented in a number of countries. %

Finally, in [1] the authors studied the model that inspired our work. Basically
they developed a dynamic, open, real economy but, without using the discrete
dynamic system theory, they are only able to conclude that:

e financial underdeveloped or very developed economies are stable because
the fixed point is stable when p is high or small;

6 For example in the years leading up to the crisis of the early 1980’s in Southern
Cone countries there is evidence that profits in the tradable sector sharply deterio-
rated due to a rise in domestic input prices. See [13,15,22].



e at an intermediate level of financial development, economies may be unsta-
ble because having fixed an intermediate value of u, the attractor is a two
stable cycle;

e more complex dynamics, perhaps chaotic, are likely to emerge;

e shocks have large and persistent effects on the final dynamics.

Studying a discrete dynamic system, we prove Propositions that support or
refute their conclusions in the following senses:

e there exist values of u, we say p™ and ™, depending on the other param-
eters values, such that economies with very developed, u > p™, or very
undeveloped, p < p™, financial markets have a unique globally structurally
stable, fixed point;

e emerging markets, that are economies with p € [u™, u*), could be stable
because it does exist a p* € [p™, u™) such that the unique fixed point is
still globally structurally stable Vi € [p™, p*). We also prove that at u = p*
the system has an a—typical bifurcation (label border collision 7 ) that opens
a two-piece chaotic region;

e when entering in the a—periodic region for u a slightly bigger then p*,
the chaotic properties of the attractor make the evolution of the system
sensitively depending on the initial condition, the dynamics is unpredictable
and structurally unstable, so perturbations on the parameters (exogenous
shocks) produce large and persistent effects;

e in the chaotic region we observe also periodic windows so that the dynamics
are predictable even though the period of the periodic orbit could be so high
as to make impossible the distinction between such a cycle and a proper a—
periodic orbits;

e when such periodic attractors are hyperbolic, the system is structurally
stable so an exogenous shock does not affect the final asymptotic dynamics.

The properties we demonstrate allow us to argue that when going through
a phase of financial development, the dynamics shown by the system could
drastically change and pass from a s table fixed point to chaotic, aperiodic,
unpredictable behaviour.

The endogenous explanation we pursue in this work is consistent with the
experience of several emerging markets where the liberalization process has
taken place (like South-East Asia) where, as a result of a rapid financial lib-
eralization process, capital in—flowed in large quantities allowing rapid growth
in lending and a boom in investment. When large capital inflows is associ-
ated with growing imbalances, the crisis came and most of these forces got
reversed: capital flowed out, currency collapsed, real estate prices dropped,

7 About such kinds of non-canonical route to chaos, see [21].



lending stopped and investment collapsed.® It is however important to em-
phasize that the aim of this paper is not to explain exactly what happened
in some specific country but rather to propose and study a unified, dynamic,
macroeconomic model that awards a central role to financial constraints and
financial development.

The paper is organized as follows. In Section 2 we present the model. In
Section 3 we study the qualitative dynamics of the model: we prove the global
stability of economies with low or high financial development and we assess
the plausibility for instability of economies at an intermediate level of financial
development. In Section 4 we present numerical simulations that enforce the
results we proved in Section 3. We give our conclusions in Section 5.

2 The model

We consider a small open economy with a single tradeable good produced by
internationally mobile capital K and a country—specific production factor Z
whose price p is expressed in terms of produced goods (so it can be seen as the
real exchange rate). We assume that the supply of Z is constant. Let o € (0, 1)
be the consumption rate so (1 — «) is the constant fraction the consumers save
of their own wealth. In such an economy there are two categories of individuals:
lenders who lend their wealth at an international equilibrium interest rate
r > 1 but they cannot invest directly in the production, and borrowers that
are the entrepreneurs investing in the production. The total output, in time ¢,
produced in the economy is given by using the following Leontief technology

yt:min{%,Z} (1)

where L > r is the capital productivity.®

Asymmetric information considerations generate moral hazard so, according
to the results reached in [7], entrepreneurs can borrow at most a proportional
amount g > 0 of their own wealth at time ¢, Wy, that is uW;. Let L be the
amount that entrepreneurs can borrow then, in time ¢, L; < puW,;. The param-
eter y represents the level of financial development reached by the economy.
As a limit case, when pu = 0, entrepreneurs can invest only their own wealth,
while the bigger u is, as the more possibility they have to borrow from the

8 See [23] for a description of the link between capital-flow reversal and currency
crises.

9 This hypothesis is necessary because otherwise the entrepreneurs have no incen-
tive in investing in the production.



capital market, and so the financial system is well-developed.!® Since the
maximum amount entrepreneurs can borrow from capital markets is fixed,
the total investment [; in each time is upper—bounded by

Iy = (14 p)W. (2)

At each period entrepreneurs maximize their profits and this program deter-
mines their optimal demand z; of the input Z. Given the production function
(1) the profit maximization implies that the entrepreneurs’ optimal demand
of the country—specific factor is z; = %, where

Kt = [t — Pl (3)

that is the difference between the total amount invested and the cost of the
production factor demanded. In an equilibrium situation it must be ([, —
pizi) = az; so we reach the following equation:

Iy — pze = az. (4)

Since Z is constant, each of the following cases can be verified:

Z > % There is an excess in the supply of Z, so its price (in terms of pro-
duced goods) is equal to zero. In this case, production is given by substitut-
ing equation (3) in equation (1), placing p; = 0, and considering that the
credit constraint (2) holds with equality. So we have that:

b= o1+ W, o)

Z < Kt There is an excess in the demand of Z (its price is positive) and
production in bounded by y; = Z. In this case we can derive the equilibrium
price p; of the production factor Z considering that both relations (4) and
the credit constraint (2) hold and placing z; = Z. Finally we have

p = L (©

Relation (6) states a positive relationship between p, and W;. It depends
on the existence of the credit constraint (2) in the sense that grater wealth
implies greater investment via credit constraint and so greater demand of Z
and, consequently, its price increases.

10Tn [17] it is considered the direct relationship between capital market rules and
the level of the financial development due to moral hazard considerations.



Now we can derive the dynamic model describing the economy. Considering
that the price of the country specific factor p;, the investment, I;, and the
production, y;, are all expressed in terms of entrepreneurs wealth W;, the
dynamic system is the net wealth produced by entrepreneurs and saved by
consumers, available for the next period, is given by:

Wit = (1 —a)(e+y —ruWy) (7)

where e > 0 is an exogenous income. This relation can be understood consid-
ering that at time ¢ entrepreneurs borrow, invest, produce and pay their debt
ruW,; while consumers save. Now we have to take consider the role played by
the credit constraint. To do this we need to study three different cases.

(1) If the financial system is well developed, entrepreneurs invest in the pro-
duction only up to the point in which the productive investment return
is equal to the capital market return so:

(ye — ruWy) = rW,. (8)

In this case there is no pure profit, and substituting (8) in the dy-
namic equation (7) we obtain the following increasing function of the
entrepreneurs’ wealth

Wipr = (1 = a)(e + W) 9)

that holds for well-developed economies.

(2) If the financial system is underdeveloped the investment, which is con-
strained, does not absorb the total supply of the country specific factor
Z so its relative price is zero. Greater current wealth implies greater in-
vestment, and therefore greater production and, because of p = 0, grater
profits and future wealth. In this case the dynamic system is given by sub-
stituting equation (5) in the wealth dynamic equation (7) so we obtain
the following increasing function

+
a

Wier = (1= ) [e+ (222 — ) wi) (10)
that holds for less—developed economies.

(3) Finally, if the financial system is at an intermediate level of development,
the investment absorbs the supply of the country—specific factor Z and,
according to the Leontief production function, the production y; = Z.
Substituting such equation in the dynamic relation (7), we have the fol-
lowing decreasing function

Wini = (1—a) e+ Z - ruiVy) (11)

that holds for intermediate financial developed economies.



Equations (10), (11) and (9) describe the dynamic system for low, intermedi-
ate, and high level of financial development of the economy respectively and,
similarly, low, intermediate, and high level of entrepreneurs’ wealth.

From the previous considerations we derive the map Wy = f(W;) that is
given by (10) for W; € [0, W), by (11) for W, € [WM W™) and by (9) for
W, € [W™, +00) where the turning points W and W™ are given by:

Za
wM = 12
T h (12)
and
VA
Wm=—-_ 13
r(14 ) (13)

The dynamic model we want to study is given by the following continuous
first—order piecewise linear map, whose iterates describe the dynamics of en-
trepreneur wealth we investigate.

AOV) = (1 —a)[e+ (B —ru) W], 0 < W, < WM,
FW) =4 W) =1 —a)le+Z—ruW], WY <W, <W™; (14)
fs(Wi) = (1 = a)(e +rWy), wm < Wy,

where a € (0,1), u > 0, é >r>1,e>0and Z > 0 are the economically
plausible definition domains of the parameters.

3 Qualitative dynamics

In this Section we study the qualitative dynamics of the continuous bimodal
piecewise linear map given by (14) when varying its parameters. In particular
we consider the case of ¢ > 0™ and (1 — a)r < 1.2 Tt must be remembered
that f is increasing on Dy = [0, W) and on D3 = [W™, +oc0) while it is
decreasing on Dy = [WM W™). 13 Furthermore its constant slopes in each of

' The study of the special case e = 0 needs a partially different approach because
the system would also have a fixed point at the origin even if it is always unstable.
12 The hypothesis (1 — a)r < 1 is economically plausible considering that o << 1
while 7 = 1 + ¢, € is sufficiently low.

13 Note that if uw =0, fo is constant on Ds.



such pieces, are respectively given by:

fL) = (1= ) (22 = ). (15)

7D = (1= a)r (16)
and

FW) = ~(1 = arp (17)

The following Proposition gives sufficient conditions on the parameter p with
respect to the other parameters of the model such that the fixed point lies on
each of the three linear pieces of the map (14).

Proposition 1 Let f given by (14) and let e > 0 and (1 — a)r < 1. Then:

(a) Y € [0, ™), f has a unique positive fized point W} € Dy;
(b) Y € [u™, uM), f has a unique positive fized point Wy € Ds;
(c) Vi € [pM,+00), f has a unique positive fized point Wi € Ds;

Za—(1—a)(Z+e) M _ Z(1-(1—a)r)

M m
~ (—a)(e+Z+Zar)’ Tajer ~ — L and p= > p™ > 0.

where pu™

To prove part (a) we consider that g(0) = (1 — a)e > 0 while g(WM) =
u(l-a)(etZ- TZ1)+[(1 o)etZ)=Zal where g(WM) < 0,Yu < p™. So f has at least
one fixed pomt in D;. The uniqueness in D; follows because f is linear in D,
with slope other than one because we are assuming (1 — «)r < 1. In this case
the fixed point is given by

(1—-a)e
1= (=) [(1+p)/a) —rp]

Wy = (18)

Furthermore it is the unique fixed point of f in R, because f is continuous,
f2 is a decreasing function and f3 is an increasing function with slope lesser
than one for the hypothesis (1 —a)r < 1.

To prove part (b) we first consider that if u = p™ then g(W™) = 0 so the
existence of the fixed point in Dy is proven. Otherwise, if u € (u™, u™) then
the same arguments we use to prove part (a) show that g(W*) > 0 while

g(Wm) _ u[re(lfa)]+[g$l:a)(€+z)*z} where g(Wm) < O,VIU/ € (/,Lm,/,LM) So f




has at least one fixed point in Dy. The uniqueness in Dy follows because f is
decreasing in D,. In this case the fixed point is given by

., (l—=a)e+2)

We = 1+(1—a)ru’ (19)

Furthermore it is the unique fixed point of f in R, because f is continuous,
f1 is an increasing function with positive intercept for the hypothesis e > 0
and f3 is an increasing function with slope lesser than one for the hypothesis
(1—a)r<1.

To prove part (c) we first consider that if y = p* then g(W™) = 0 so the
existence of the fixed point in Dj is proven. Otherwise, if 4 € (™, +00) then
the same arguments we use to prove part (b) show that g(W™) > 0 while it

does exist a value of W,, for instance W = 1£1(:lzf)w where W > W™ because

p > ™, such that g(W) < 0. So f has at least one fixed point in Ds. The
uniqueness in D3 follows because f is linear in D3 with slope lesser than one
for the hypothesis (1 — a)r < 1. In such a case the fixed point is given by

(1—-a)e

17 0
Pl -(1-a)r

(20)

Furthermore it is the unique fixed point of f in in R, because f is continuous
and piecewise linear and f; is an increasing function with positive intercept
for the hypothesis e > 0. O

The following Proposition states the global stability of economies at high or
low financial development levels.

Proposition 2 Let f given by (14) and let e > 0 and (1 — a)r < 1. Then

(a) Y € [0, ™), WY is a globally stable fixed point.
(b) Yu € [uM, +00), W5 is a globally stable fized point.

PROOF. To prove statement (a) we first consider that Vi € [0, ™), the map
f has a unique fixed point W such that W} € D,, as proved in proposition
1 part (a). Furthermore f is a linear increasing function in Dy and f(0) > 0
(because of e > 0)while f(WM) < WM so its multiplier, given by (15),
fi € (0,1),YW; € D;. Then the fixed point W} € D, is asintotically stable
in D;. Considering that this case set D; is a positively invariant set, then we
conclude that Wi € D, is globally stable.

10



To prove statement (b) we first consider that Vu € [u, +00), the map f has
a unique fixed point W} € D3 as proved in Proposition 1 part (c¢). Now we
have to consider two different cases. First, if u € (™, +00) then W3 € Dj
where D} = D3\ {W™}. Furthermore its multiplier, given by (16), f} € (0,1)
for the hypothesis (1 — a)r < 1, so the fixed point W is asintotically stable
in the set DJ. The global stability depends on the positive invariance of the
set Dj. Secondly, if u = ™ then W3 = W™ that is a no differentiable point
so we cannot calculate its eigenvalue. However W™ is asintotically stable from
the right in the sense that VIW, € Dj the sequence of the iteratives converges
to W™. Furthermore, as previously said, D} is positively invariant. So we
conclude that W3 € Dy is globally stable Vu € [, 4+00). O

As we proved, the dynamics exhibited by economies at high or low levels of
financial development are tame: the generic orbit converging to the unique pos-
itive fixed point is definitively monotone. Furthermore the economy is struc-
turally stable, because of the hyperbolicity of the fixed point, so its behaviour
is predictable.

Now we have to consider the case of 1 € [u™, u*) that is the case of economies
at an intermediate level of financial development. First we consider that in
such a case the generic orbit that eventually converges to the fixed point (or
to another attractor invariant set) is not monotone. In fact the only fixed point
W3 belongs to the decreasing piece of f, that is the set Dy, so every point at
the right of W5 is mapped to its left and vice-versa. So, even though the fixed
point is stable, the dynamics of the trajectory is definitively oscillating.

The following Proposition proves the stability of economies at an intermediate
level of financial development when p is small enough.

Proposition 3 Let f given by (14) and let e > 0 and (1 — «)r < 1. Then the

fized point W3 is globally stable Yu € [pu™, u*) where pu* = (1_1a)r € [um, ™).

PROOF. As we proved in Proposition 1 Part (b), if p € [u™, u™) then the
unique fixed point W3 belongs to Dy so its multiplier is given by (17) that
belongs to (—1,0) < u < p*. The fixed point is also globally stable because
the set D, is positively invariant. 0O

Now we have to study the case of u € [u*, u*). A previous consideration is
that if © = p* then the unique fixed point W3 is not hyperbolic: its multiplier,
given by (17), is in fact f3(W3) | == —1. So, when p = p* the map exhibits
a bifurcation: its fixed point becomes unstable and we have to identify the
new attractor that is eventually born.

11



Before studying this case we consider that the map f is piecewise linear so it is
only piecewise smooth and it can exhibit non—canonical bifurcation phenom-
ena. While in the well-known period-doubling route to chaos when a fixed
point becomes unstable we observe a period—two stable orbit, in such a case
this does not happen even if we find out a cycle-2 owned by the map as proved
in the following Proposition.

Proposition 4 Let f given by (14) and let e > 0 and (1 — a)r < 1. Let also
w = w*. Then there exists a period—2 orbit, say Os, that involves the mazimum

point, given by (12), that is Oy = {WM_ f(WM)}.

PROOF. The proof is straightforward as it is only based on the computation
that f2(WM) |, o= WM |, 2. O

Once known that f has a cycle-2 involving the maximum point for the bifur-
cation value of © = p*, we are interested in knowing if such invariant set is
stable. However, since the map is not differentiable in W, we cannot compute
its multiplier so we cannot study its stability in the typical way.

The discontinuity in the first derivative of the map implies it can jump with-
out crossing the bifurcation value —1, so an attractor could die without a
double—period one being born. Furthermore, as proved in [21], border collision
bifurcations are possible so that the map could pass from a stable fixed point
to a variety of attractors like a period-m attractor (m > 2), or a 2m-—piece
chaotic attractor, or a m—piece chaotic attractor or finally a one—piece chaotic
attractor.

In order to study the stability of the cycle-2, O,, we found out for p = p*,
we have to consider that the point W™ that belongs to Oy has no derivative
(it has two one-sided derivatives). However the following Proposition proves
that the bifurcation parameter value pu* opens a chaotic region.

Proposition 5 Let f given by (14) and let e > 0 and (1 — a)r < 1. Let also
= p*. Then WM is a Misiurewicz point.**

PROOF. VW, € [WM_ f(WM)] we have that f*(W;) = W,, as it has been
proved by verifying that in such set f2(W,) = fao fa | == Wi. So each point
in the set I, = WM f(WM)] is a fixed point for the second iterate, f2. Then
each point in Iy, except W3, is involved by a cycle-2 and each of such periodic
orbits must be unstable, so also Os is a period—two orbit unstable. Because Oy

14 A pre-periodic point is usually called a Misiurewicz point.

12



involves the maximum W™ as we proved in Proposition 4, then the critical
point is attracted by an unstable orbit so it is a Misiurewicz point. O

Since the topological entropy at the Misiurewicz point is greater than 1, this
signales that we have entered into a (a—periodic) chaotic region. ' In partic-
ular, after the bifurcation occurred at p*, the map is 2-piece chaotic.

Here we cannot prove other results with respect to all the parameters of the
system however, since other qualitative dynamics that could eventually emerge
strictly depend on the fixed values of the parameters, in the following Section
4 we use the numerical analysis to support the results we derived in this
section and we present numerical simulation fixing all the parameters but pu
at economically plausible values. In such a way we pursue numerical results
about the dynamics exhibited by the model. The quantitative analysis allow
us to show the dynamic evolution of the system and to conclude about its
properties.

4 Quantitative dynamics

In this Section we provide some numerical simulations by fixing the values of
all the parameters of the model but x. In such a way we are able to prove
quantitatively the qualitative results reached in the Section 3 and also to
pursue other results that cannot be proved rigorously. Let a = 0.8, r = 1.02,
a=05s01=2e=10and Z=100.17

In Figure 1 we present the scheme of f for different values of . As we proved in
Proposition 1, the fixed point can belong to each of the pieces of f depending
on p, where p™ ~ 2.37 while pM ~ 39.02.18

As we proved in Proposition 2 the economy is globally stable for 0 < p < ™
and p > p™ and the generic orbit definitively converges monotonically to W
or W¥, as determined in (18) and (20), that are increasing points of f. In
fact the Koenigs Lemerary staircase diagram in Figures 2 and 3 shows the
converging trajectory for an arbitrary initial condition.

15 At the pre—periodic point we have no attracting cycles since they cannot capture
the critical point, which is pre—periodic.

16 As it can be proved the chosen value of Z only affects the quantitative dynamics,
that is the width of the invariant interval where the dynamics are exhibited, but
not the qualitative dynamics, that is the bifurcation sequence occurs at the same
parameter values of u.

1"We choose these parameter values according to what considered in [1].

18 We are approximating with an error lesser than 1072,

13
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Fig. 1. Scheme of f as defined in (14) in the three cases of localization of the fixed
point: in (a), u = 1.5, in (b), u = 6 and in (¢), u = 60.
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Fig. 2. Koenigs Lemerary staircase diagram for two different initial conditions: in
(a), Wy = 15 € (W5, WM) while in (b), Wy = 1 < Wy In both cases u = 1.5.

As we proved in Proposition 1 the fixed point W belongs to the decreasing
piece when ™ <y < ™ that is the case of economies going through a phase
of financial development. Furthermore, because of the bimodality of f, there
is a stretching and folding action that could generate complex dynamics like
cycles of every period and chaos. However, as we stated in Proposition 3, if
p < p*, where p* ~ 4.9, the fixed point is still globally stable even if the
generic orbit is asymptotically oscillating.

In case u = p* the map exhibits a bifurcation and it gives rise to an infi-
nite number of repelling period—2 cycles. In fact, Propositions 4 and 5 show
such evidence. Note that for such value of i the fixed point is not hyperbolic
while each point W, € [WM f(WM)] is fixed for the second iterate of f, as
it is clear when looking at Figure 4, (b). So all the period-2 orbits are unsta-
ble. Furthermore the set [W™ ., f(1W™)] is positively invariant so every initial
condition will converge to one of such repelling periodic orbit.

Numerical computations also show that all these cycles—2 are of the kind

14



fa) (&)
Wy 20 Wi

P

0 W o2 0 20
Fig. 3. Koenigs Lemerary staircase diagram for two different initial conditions: in
(a), Wy =15 > W3 while in (b), Wy =1 < W3 In both cases pu = 60.

fa) &) fe)
30
W’Hl w0 VVHZ . Y‘;VHI

0 W 30 o 30 0 W Ell
Wy L L

Fig. 4. Repelling period-2 orbits for u ~ 4.9. In (a) we have a first cycle two for the
initial condition Wy = 20 that is different from the one in (c) for Wy = 5. In (b) the
fixed invariant interval of f? is illustrated.

Oy = {W5+~, Ws—~},Vy € (O, w}, where W5 is given by (19). Two
of such orbits are, for example, the ones in Figure 4 (a) and (¢). The bifurcation
occurring at p* is not canonical: one of the repelling cycle-2 involves the
maximum point W that is a Misiurewicz point. So such bifurcation opens
a chaotic region in which the generic orbit covers two disjoint invariant sets.
Figure 5 shows the trajectory for an initial condition once the bifurcation has
happened and its representation versus time.

As we said, after the bifurcation at p*, the dynamics is suddenly chaotic so the
map has the properties of density of the periodic orbits, topological transitivity

and sensitively dependence on the initial condition. *

The following Figure 6 shows the bifurcation diagram of the map for different
values of p. The black intervals are those in which the dynamics is chaotic or

19We are referring to the definition of chaotic set given in [12].
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Fig. 5. (a) The generic a—periodic orbit covers two disjoint invariant sets. (b) The
trajectory with respect to time. In both cases y = 5.5 and Wy = 5.
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Fig. 6. Bifurcation diagram with respect to u.

Fig. 7. Bifurcation diagram for p € (4,9).

periodic with very high period. Furthermore we observe both large intervals of
i where the asymptotic behaviour is a cycle=2 (if u € (pq, o) with py ~ 8.39
and pp ~ 23.5) or a cycle-3 (if u € (pf, ph) with g} ~ 29.1 and pfy ~ 39.02) 0.
In this case the dynamics is still predictable even in the long run.

20Tn such a case the chaotic properties could also be proven by the wellknown Li
and Yorke Theorem, see [20].
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Fig. 8. Bifurcation diagram for p € (22,32).

However, inside the two chaotic regions, that are visible in the following Fig-
ures 7 and 8, the dynamics is both chaotic and periodic with eventually a
very high period. So, while in the first case the asymptotic behaviour is not
predictable, in the second case it is still predictable even though the attractor
could be non—hyperbolic and so the system would be structurally unstable.
Some small intervals of i that are periodic windows inside the chaotic region
are visible in such Figures.

5 Conclusions

In this work we studied a piecewise linear dynamic system describing a small
open economy where the reached level of financial development plays a central
role as a source of endogenous instability.

By analyzing the qualitative dynamics we proved rigorously the global stability
of economies at a low or high level of financial development. On the contrary,
the economies at an intermediate level of financial development could not
converge to the steady state. Consequently we assess the existence of chaotic
behavior in the patterns. In this case we have been able to prove by qualitative
and also quantitative study the following results.

e Economies at an intermediate level of financial development eventually con-
verge to the fixed point by oscillations or they fluctuate indefinitely.

e They can be unstable but predictable if the attractor is a stable periodic
orbit, even with high period, that can also belong to a window in the chaotic
region.

e They can be unstable and unpredictable if we are in a proper chaotic region
because of the sensitivity to the initial conditions.

e Economies can be structurally unstable when going trough regions governed
by different asymptotic dynamics because of the lack of hyperbolicity.
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e The bifurcation phenomenon is atypical because of the presence of no dif-
ferentiable points.

The instability of economies that are financially developing can be understood
according to the hypothesis of the model studied. In fact, during a boom, the
investment expands and so does the demand for the country—specific factor. It
increases its price and pushes down future profits. Less profits lead to less cred-
itworthiness because of the presence of the credit constraint and consequently
less investments. Finally, the country—specific factor will not be completely
exhausted so its prices will fall down with future high profits and a possible
new economic boom.
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